Skip to main content

Biotic and Abiotic Release of Inorganic Substances Exploited by Bacteria

  • Chapter
Bacteria in Nature

Part of the book series: Bacteria in Nature ((BANA,volume 3))

Abstract

The planet earth has an atmosphere, abundant liquid water, and an extensive biota, including at least 0.5 million species of what are generally called plants and some 1.5 million species of animals. Although the length of time microorganisms have colonized and been present on the earth is three- to fourfold longer than plants and animals have been present, our knowledge of the microbial species present at different times in the biosphere is poor. The fossil record does show that microscopic forms of life have been present on the earth for at least 3.2 billion years and, from results of biogeochemical studies, it is evident that microorganisms made up the bulk of the mass of our biosphere (Schopf et al, 1965). Hattori et al. (1983) suggest that oxidative-reductive reactions involving sulfur in continental environments began about 2.2 x 109 years ago, as did also a significant rise in atmospheric C02 content. Microorganisms, with their biochemically diverse life processes, have interacted with the inorganic environment over a sufficient period of time to have had a pronounced influence on the organization of the biosphere (Cloud, 1983).

Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arceneaux, J. E., and Byers, B. R., 1980, Ferrisiderophore reductase activity in Bacillus megaterium, J. Bacteriol. 141: 715 – 721.

    PubMed  CAS  Google Scholar 

  • Balashova, V. V., Vedenina, I. Y., Barkosyan, G. E., and Zavarzin, G. A., 1974, The auxotrophic growth of Leptospirillum ferrooxidans, Mikrobiologiia 43: 581 – 588.

    PubMed  CAS  Google Scholar 

  • Bennett, J. C., and Tributsch, H., 1978, Bacterial leaching patterns on pyrite crystal surfaces, J. Bacteriol. 134: 310 – 317.

    PubMed  CAS  Google Scholar 

  • Berry, U. K., and Murr, L. E., 1978, Direct observation of bacteria and quantitative studies of their catalytic role in the leaching of low-grade, copper-bearing wastes, in: Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena( L. E. Murr, A. E. Torma, and J. A. Brierley, eds.), pp. 103 – 149, Academic, New York.

    Google Scholar 

  • Berry, U. K., Murr, L. E., and Hiskey, J. B., 1978, Galvanic interactions between chalcopyrite and pyrite during bacterial leaching of low grade wastes, Hydrometallurgy 3: 309 – 326.

    Article  CAS  Google Scholar 

  • Berthelin, J., 1983, Microbial weathering processes, in: Microbial Geochemistry( W. E. Krumbein, ed.), pp. 223 – 262, Black well Scientific, Boston.

    Google Scholar 

  • Blakemore, R. P., 1982, Magnetotactic bacteria, Annu. Rev. Microbiol. 36: 217 – 238.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, R. P., Maratea, D., and Wolfe, R. S., 1979, Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium, J. Bacteriol. 140: 720 – 729.

    PubMed  CAS  Google Scholar 

  • Blakemore, R. P., and Frankel, R. B., 1981, Magnetic navigation in bacteria, Sci. Am. 245: 58 – 65.

    Article  Google Scholar 

  • Bowen, H. J. M., 1966, Trace Elements in Biochemistry, Academic, New York.

    Google Scholar 

  • Brierley, J. A., 1978, Thermophilic iron-oxidizing bacteria found in copper leaching dumps, Appl. Environ. Microbiol., 36: 523 – 525.

    PubMed  CAS  Google Scholar 

  • Brierley, J. A., and Lockwood, S. J., 1977, The occurrence of thermophilic iron oxidizing bacteria in a copper leaching system, FEBS Microbiol. Lett. 2: 163 – 165.

    CAS  Google Scholar 

  • Brierley, C. L., 1982, Microbiological mining, Sci. Am. 247: 44 – 53.

    Article  CAS  Google Scholar 

  • Brock, T. D., 1981, Extreme thermophiles of the genus Thermusand Sulfolobus, in: The Prokaryotes( M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, eds.), pp. 978 – 984, Springer-Verlag, New York.

    Google Scholar 

  • Brock, T. D., and Gustafson, J., 1976, Ferric iron reduction by sulfur and iron-oxidizing bacteria, Appl. Environ. Microbiol. 32: 567 – 571.

    Google Scholar 

  • Bromfield, S. M., 1954, Reduction of ferric compounds by soil bacteria, J. Gen. Microbiol. 11: 1 – 6.

    PubMed  CAS  Google Scholar 

  • Brown, K. A., and Ratledge, C., 1975, Iron transport in Mycobacterium smegmatis: Ferrimycobactin reductase (NAD(P)H): ferrimycobactin oxidoreductase, the enzyme releasing iron from its carrier, FEBS Microb. Lett. 53: 262 – 266.

    Article  CAS  Google Scholar 

  • Bruynesteyn, A., Lawrence, R. W., Vizsolyi, A., and Hackl, R., 1984, An elemental sulfur producing biohydrometallurgical process for treating sulfide concentrates, in: Recent Progress in Biohydrometallury, Proceedings of the International Symposium on Biohydrometallurgy, Cagliari, Italy ( G. Rossi and A. Torma, eds.), pp. 151 – 168. Assoc. Mineraria Sarda, Iglesias, Italy.

    Google Scholar 

  • Bryner, L. C., and Anderson, R., 1957, Microorganisms in leaching sulfide minerals, Indust. Eng. Chem. 49: 1721 – 1724.

    Article  CAS  Google Scholar 

  • Burkstaller, J. E., McCarty, P. L., and Parks, G. A., 1975, Oxidation of cinnabar by Fe(III) in acid mine waters, Env. Sci. Technol. 9: 676 – 678.

    Article  CAS  Google Scholar 

  • Buseck, P. R., 1982, The electron microscopy of minerals, Am. Sci. 71: 175 – 185.

    Google Scholar 

  • Byers, B. R., and Arceneaux, J. E. L., 1977, Microbial transport and utilization of iron, in: Microorganisms and Minerals( E. D. Weinberg, ed.), pp. 215 – 249, Decker, New York.

    Google Scholar 

  • Cameron, F. J., Edwards, C., and Jones, M. V., 1981, Isolation and preliminary characterization of an iron- oxidizing bacterium from an ochre-polluted stream, J. Gen. Microbiol. 124: 213 – 217.

    Google Scholar 

  • Carrano, C. J., and Raymond, K. N., 1978, Coordination chemistry of microbial iron transport compounds: Rhodotorulic acid and iron uptake in Rhodotorula pilimanae, J. Bacteriol. 136: 69 – 74.

    PubMed  CAS  Google Scholar 

  • Cloud, P., 1983, The biosphere, Sci. Am. 249: 176 – 189.

    Google Scholar 

  • Colmer, A. R., Temple, K. L., and Hinkle, M. R., 1950, An iron-oxidizing bacterium from the acid drainage of bituminous coal mines, J. Bacteriol. 59: 317 – 328.

    PubMed  CAS  Google Scholar 

  • Cooper, S. R., McArdle, J. V., and Raymond, K. N., 1978, Siderophore electrochemistry: Relation to intracellular iron release mechanisms, Proc. Natl. Acad. Sci. USA 75: 3551 – 3554.

    Article  PubMed  CAS  Google Scholar 

  • Corrans, I. J., Harris, B., and Ralph, B. I., 1972, Bacterial leaching: An introduction to its applications and theory and a study of mechanisms of operations, J. So. Afr. Inst. Min. Met. 72: 121 – 230.

    Google Scholar 

  • Costerton, J. W., Irvin, R. T., and Cheng, K. J., 1981, The bacterial glycocalyx in nature and disease, Annu. Rev. Microbiol. 35: 299 – 338.

    Article  PubMed  CAS  Google Scholar 

  • Costerton, J. W., Nickel, J. C., and Ladd, T. I., 1986, Suitable methods for the comparative study of free-living and surface-associated bacterial populations, in: Bacteria in Nature, Vol. II ( J. S. Poindexter and E. R. Leadbetter, eds.), pp. 49 – 84, Plenum, New York.

    Google Scholar 

  • Cox, C. D., 1980a, Iron uptake with ferripyochelin and ferric citrate by Pseudomonas aeruginosa, J. Bacteriol. 142:581–587.

    Google Scholar 

  • Cox, C. D., 1980b, Iron reductase from Pseudomonas aeruginosa, J. Bacteriol. 141:199–204.

    Google Scholar 

  • Cox, J. C., and Boxer, D. H., 1978, The purification and some properties of rusticyanin, a blue copper protein involved in Fe(II) oxidation from Thiobacillus ferrooxidans, Biochem. J. 174: 497 – 502.

    PubMed  CAS  Google Scholar 

  • Cullimore, D. R., and McCann, A. E., 1977, The identification, cultivation and control of iron bacteria in in ground water, in: Aquatic Microbiology( F. A. Skinner and J. M. Shewan, eds.), pp. 219 – 259, Academic, London.

    Google Scholar 

  • Dailey, H. A., and Lascelles, J., 1977, Reduction of iron and synthesis of protoheme by Spirillum itersoniiand other organisms, J. Bacteriol. 129: 815 – 820.

    PubMed  CAS  Google Scholar 

  • DeCastro, A. F., and Ehrlich, H. L., 1970, Reduction of iron oxide minerals by a marine bacillus, Antonie van Leeuwenhoek 36: 317 – 327.

    Article  CAS  Google Scholar 

  • DiSpirito, A. A., and Tuovinen, O. H., 1982a, Uranous iron oxidation and carbon dioxide fixation by Thioba- cillus ferrooxidans, Arch. Microbiol. 133:28–32.

    Google Scholar 

  • DiSpirito, A. A., and Tuovinen, O. H., 1982b, Kinetics of uranous ion and ferrous iron oxidation by Thiobacillus ferrooxidans, Arch. Microbiol. 133:33–37.

    Google Scholar 

  • Ehrlich, H. L., 1978, Inorganic energy sources for chemolithotrophic and mixotrophic bacteria, Geomicrobiol. J. 1: 65 – 83.

    Article  CAS  Google Scholar 

  • Ehrlich, H. L., 1981, Geomicrobiology, Decker, New York.

    Google Scholar 

  • Foster, T. J., 1983, Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria, Microbiol. Rev. 47: 361 – 409.

    PubMed  CAS  Google Scholar 

  • Frost, G. E., and Rosenberg, H., 1973, The inducible citrate-dependent iron transport system in Escherichia coliK-12, Biochim. Biophys. Acta 330: 90 – 101.

    Article  PubMed  CAS  Google Scholar 

  • Golovacheva, R. S., 1979a, Attachment of Sulfobacillus thermosulfidooxidans cells to the surface of sulfide minerals, Mikrobiologiia 48:528–533.

    Google Scholar 

  • Golovacheva, R. S., 1979b, Characteristics of Sulfobacillus thermosulfidooxidans, Mikrobiologiia 48:863–867.

    Google Scholar 

  • Gromova, L. A., Pereverzev, N. A., and Karavaiko, G. I., 1978, Pili of Thiobacillus ferrooxidans, Mikrobiologiia 47: 293 – 295.

    Google Scholar 

  • Gromova, L. A., Karavaiko, G. I., Seutsov, A. V., and Pereverzev, N. A., 1983, Identification and distribution of sulfur in Thiobacillus ferrooxidanscells, Mikrobiologiia 52: 455 – 459.

    PubMed  CAS  Google Scholar 

  • Groudev, S. N., 1979, Mechanism of bacterial oxidation of pyrite, Mikrobiologiia 16: 75 – 87.

    Google Scholar 

  • Groudev, S. N., 1980, Leaching of sphalerite with different strains of Thiobacillus ferrooxidans, Comptes Rendu 33: 1119 – 1122.

    Google Scholar 

  • Groudev, S. N., 1980, Leaching of sphalerite with different strains of Thiobacillus ferrooxidans, Comptes Rendu 33: 1119 – 1122.

    Google Scholar 

  • Groudev, S. N., 1981b, Leaching of cobalt from synthetic cobalt sulfide by Thiobacillus ferrooxidans and Thiobacillus thiooxidans, Comptes Rendu 34:217–220.

    Google Scholar 

  • Groudev, S. N., 1982, Leaching of nickel from sulfide minerals by pure and mixed cultures of chemolithotrophic bacteria, Comptes Rendu 35: 1113 – 1116.

    Google Scholar 

  • Groudev, S. N., 1983, Oxidation of zinc sulfides by Thiobacillus ferrooxidansand Thiobacillus thiooxidans, Comptes Rendu 36: 105 – 108.

    Google Scholar 

  • Groudev, S. N., and Genchev, F. M., 1978a, Mechanism of bacterial oxidation of chalcopyrite, Mikrobiologiia 15:139–152.

    Google Scholar 

  • Groudev, S. N., and Genchev, F. N., 1978b, Bacterial leaching of copper sulfite minerals with laboratory-bred strains, Symp. Miners Metall. 1:343–355.

    Google Scholar 

  • Groudev, S. N., and Genchev, F. N., 1979, Bioleaching of aluminium from clays, in: Proceedings of the Thirteenth International Mineral Processing Congress, Warsaw, Poland, pp. 87 – 102.

    Google Scholar 

  • Groudev, S. N., Genchev, F. N., and Gaidarjiev, S. S., 1978, Observations on the microflora in an industrial copper dump leaching operation, in: Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena( L. E. Murr, A. E. Torma, and J. A. Brierley, eds.), pp. 253 – 274, Academic, New York.

    Google Scholar 

  • Groudev, S. N., Genchev, F. N., and Groudeva, V. I., 1982, Use of microorganisms for recovery of aluminum from alumino-silicates. Achievements and Perspectives, in: Travaux Icsoba, Twelfth International Symposium Aluminum Production Until 2000, pp. 203 – 212, Acaedemie Yougoslave des Sciences et des Arts, Zagreb.

    Google Scholar 

  • Groudeva, U. I., Groudev, S. N., and Markov, K. I., 1982, Biological basis of increased ferrous-oxidizing activity of Thiobacillus ferrooxidansmutants, Comptes Rendu 35: 371 – 373.

    Google Scholar 

  • Guirard, B. M., and Snell, E. E., 1954, Pyridoxal phosphate and metal ions as cofactors for histidine decarboxylase, J. Am. Chem. Soc. 76: 4745 – 4746.

    Article  CAS  Google Scholar 

  • Haefeli, C., Franklin, C., and Hardy, K., 1984. Plasmid-determined silver resistance in Pseudomonas stutzeriisolated from a silver mine, J. Bacteriol. 158: 389 – 392.

    PubMed  CAS  Google Scholar 

  • Hanert, H. H., 1981a, The genus Gallionella, in: The Prokaryotes( M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, eds.), pp. 509 – 515, Springer-Verlag, New York.

    Google Scholar 

  • Hanert, H. H., 1981b, The genus Siderocapsa (and other iron- or manganese-oxidizing eubacteria), in: The Prokaryotes (M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, eds.), pp. 1049–1059, Springer-Verlag, New York.

    Google Scholar 

  • Harder, E. C., 1919, Iron depositing bacteria and their geologic relations, U.S. Geol. Surv. Prof. Pap. 113: 1 – 89.

    CAS  Google Scholar 

  • Hattori, K., Krouse, H. R., and Campbell, F. E., 1983, The start of sulfur oxidation in continental environments: About 2.2 x 109 years ago, Sci. 221: 549 – 551.

    Article  CAS  Google Scholar 

  • Heinin, W., 1963a, Silicon metabolism in microorganisms. III. Influence of different anions on bacterial Si metabolism, Arch. Microbiol. 45:145–161.

    Google Scholar 

  • Heinin, W., 1963b, Silicon metabolism in microorganisms. IV. Effect of organic compounds, especially glucose, on silicon metabolism in bacteria, Arch. Microbiol. 45:162–171.

    Google Scholar 

  • Heinin, W., 1963c, Silicon metabolism in microorganisms. V. Mobility of incorporated silicic acid, Arch. Microbiol. 45:172–178.

    Google Scholar 

  • Holland, H. D., and Schidlowski, M., (eds.), 1982, Mineral Deposits and the Evolution of the Biosphere, Dahlem Konferenzen, Springer-Verlag, New York.

    Google Scholar 

  • Holmes, D. S., Lobos, J. H., and Bopp, L. H., 1984, Cloning of Thiobacillus ferrooxidansplasmids in Escherichia coli, in: Recent Progress in Biohydrometallurgy, Proceedings of the International Symposium on Biohydrometallurgy, Cagliari, Italy ( G. Rossi and A. Torma, eds.), pp. 541 – 554. Assoc. Mineraria Sarda, Iglesias, Italy.

    Google Scholar 

  • Howard, A., and Lundgren, D. G., 1970, Inorganic pyrophosphatase from Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can. J. Biochem. 48: 1302 – 1307.

    PubMed  CAS  Google Scholar 

  • Ingledew, W. J., 1982, Thiobacillus ferrooxidans. The bioenergetics of an acidophilic chemolithotroph, Biochim. Biophys. Acta 683: 89 – 117.

    PubMed  CAS  Google Scholar 

  • Ingledew, W. J., Cox, J. C., and Hailing, P. J., 1977, A proposed mechanism for energy conservation during Fe + 2 oxidation by Thiobacillus ferrooxidans: Chemiosmotic coupling to net H + influx, FEBS Microbiol. Lett. 2: 193 – 197.

    CAS  Google Scholar 

  • Ishikawa, T., Murayama, T., Kawahara, I., and Imaizumi, T., 1984, A treatment of acid mine drainage utilizing bacterial oxidation, in: Recent Progress in Biohydrometallurgy, Proceedings of the International Symposium on Biohydrometallurgy, Cagliari, Italy, ( G. Rossi and A. Torma, eds.), pp. 393 – 407. Assoc. Mineraria Sarda, Iglesias, Italy.

    Google Scholar 

  • Ivarson, K. C., 1980, Enhancement of uranous-ion oxidation by Thiobacillus ferrooxidans, Curr. Microbiol. 3: 253 – 254.

    Article  Google Scholar 

  • Jones, J. G., 1981, The population ecology of iron bacteria (Genus Ochrobium)in a stratified eutrophic lake, J. Gen. Microbiol. 125: 85 – 93.

    Google Scholar 

  • Jones, J. G., Gardener, S., and Simoin, B. M., 1983, Bacterial reduction of ferric iron in a stratified entrophic lake, J. Gen. Microbiol. 129: 131 – 139.

    CAS  Google Scholar 

  • Karavaiko, G. I., and Pivovarova, G. A., 1977, Mechanism of oxidation of reduced sulfur compounds by Thiobacilli, in: Bacterial Leaching, G.B.F. Conference, Braunschweig-Stoeckheim, Verlag Chemie. ( W. Schwartz, ed.), pp. 37 – 46, Weinheim, West Germany.

    Google Scholar 

  • Karavaiko, G. I., Gromova, L. A., and Pereverzev, N. A., 1982, Nature of sulfur-containing component and its function in Thiobacillus ferrooxidanscells, Mikrobiologiia 52: 559 – 562.

    Google Scholar 

  • Kargi, F., 1982, Enhancement of microbial removal of sulfur from coal, using concentrated cell suspensions of T. ferrooxidansand an external carbon dioxide supply, Biotech. Bioeng. 23: 749 – 752.

    Article  Google Scholar 

  • Keller, L., and Murr, L. E., 1982, Acid bacterial and ferric sulfate leaching of pyrite single crystals, Biotech. Bioeng. 24: 83 – 96.

    Article  CAS  Google Scholar 

  • Kelly, D. P., 1982, Biochemistry of the chemolithotrophic oxidation of inorganic sulfur, Philos. Trans. R. Soc. Lond. [Biol.] 298: 499 – 528.

    Article  CAS  Google Scholar 

  • Kelly, D. P., Norris, P. R., and Brierley, C. L., 1979, Microbiological method for the extraction and recovery of metals in: Microbial Technology: Current State, Future Prospects (A. T. Bull, D. C. Ellwood, and G. Ratledge, eds.), Soc. Gen. Microbiol. Symp. 29:263–309, Cambridge University Press.

    Google Scholar 

  • Kino, K., and Usami, S., 1982, Biological reduction of ferric iron by iron- and sulfur-oxidizing bacteria, Agric. Biol. Chem. 46: 803 – 805.

    Article  CAS  Google Scholar 

  • Komarnemi, S., and Roy, D. M., 1983, Tobermorites: A new family of cation exchangers, Science 221: 647 – 648.

    Article  Google Scholar 

  • Korobushkina, E. D., Karavaiko, G. I., and Korobushkin, I. M., 1983, Biogeochemistry of gold, in: Environmental Bio geochemistry(R. Hallberg, ed.), Ecol. Bull. (Stockh.) 35: 325 – 333.

    Google Scholar 

  • Krauskopf, K. B., 1967, Introduction to Geochemistry, McGraw-Hill, New York.

    Google Scholar 

  • Krumbein, W. E., 1983, Microbial Geochemistry, Blackwell Scientific, Boston.

    Google Scholar 

  • Keunen, J. G., and Tuovinen, O. H., 1981, The Genera Thiobacillusand Thiomicrospira, in: The Prokaryotes( M. P. Starr, H. Stolp, H. G. Truper, H. Bulows, and H. G. Schlegel, eds.), pp. 1023 – 1036, Springer- Verlag, New York.

    Google Scholar 

  • Keunen, J. G., and Beudeker, R. A., 1982, Microbiology of the thiobacilli and other sulfur-oxidizing autotrophs, mixotrophs and heterotrophs, Philos. Trans. R. Soc. Lond. [Biol.] 298: 473 – 497.

    Article  Google Scholar 

  • Lascelles, J., and Burke, A., 1978, Reduction of ferric iron by L-lactate and DL-glycerol-3-phosphate in membrane preparations from Staphylococcus aureusand interactions with nitrate reductase system, J. Bacteriol. 134: 585 – 589.

    PubMed  CAS  Google Scholar 

  • Lazaroff, N., 1983, The exclusion of D20 from the hydration sphere of FeS04-7H20 oxidized by Thiobacillus ferrooxidans, Science 222: 1331 – 1334.

    Article  PubMed  CAS  Google Scholar 

  • Lebedeva, E. V., Lyalikova, N. N., and Bugel’skii, Y. Y., 1978, Participation of nitrifying bacteria in the weathering of serpentinized ultrabasic rocks, Mikrobiologiia 47: 1101 – 1107.

    PubMed  CAS  Google Scholar 

  • Lebedeva, E. V., and Lyalikova, N. N., 1979, Reduction of crocoite by Pseudomonas chromatophilasp. nov., Mikrobiologiia 48: 517 – 522.

    PubMed  CAS  Google Scholar 

  • Lewis, A. J., and Miller, J. D. A., 1977, Stannous and cuprous ion oxidations by Thiobacillus ferrooxidans, Can. J. Microbiol. 23: 310 – 324.

    Google Scholar 

  • Livesey-Goldblatt, E., Philippa, N., and Livesey-Goldblatt, D. R., 1984, Gold recovery from arsenopyrite/pyrite ore by bacterial leaching and cyanidation, in: Recent Progress in Biohydrometallurgy, Proceedings of the International Symposium on Biohydrometallurgy, Cagliari, Italy ( G. Rossi and A. Torma, eds.), pp. 627 – 641, Assoc. Mineraria Sarda, Iglesias, Italy.

    Google Scholar 

  • Lodge, J. S., Gaines, C. G., Arceneaux, J. E. L., and Byers, B. R., 1980, Non-hydrolytic release of iron from ferrobactin analogs by extracts of Bacillus cereus, Biochem. Biophys. Res. Commun. 97: 1291 – 1295.

    Article  PubMed  CAS  Google Scholar 

  • Lodge, J. S., Gaines, C. G., Arceneaux, J. E. L., and Byers, B. R., 1982, Ferrisiderophore reductase in Agrobacterium tumefaciens, J. Bacteriol. 149: 771 – 774.

    PubMed  CAS  Google Scholar 

  • Loughman, F. C., 1969, Chemical Weathering of the Silicate Minerals, Elsevier, New York.

    Google Scholar 

  • Lundgren, D. G., and Tano, T., 1978, Structure-function relationships of Thiobacillusrelative to ferrous iron and sulfide oxidation, in: Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena( L. E. Murr, A. E. Torma, and J. A. Brierley, eds.), pp. 151 – 166, Academic, New York.

    Google Scholar 

  • Lundgren, D. G., and Dean, W., 1979, The Biogeochemistry of Iron, in: Biogeochemical Cycling of Mineral Forming Elements( P. A. Trudinger and D. J. Swaine, eds.), pp. 369 – 395, Elsevier, New York.

    Google Scholar 

  • Lundgren, D. G., and Silver, M., 1980, Ore leaching by bacteria, Annu. Rev. Microbiol. 34: 263 – 283.

    Article  PubMed  CAS  Google Scholar 

  • Lundgren, D. G., and Malouf, E. E., 1983, Microbial extraction and concentration of metals, in: Advances in Biotechnological Processes( A. Mizrahi and A. L. vanWezel, eds.), pp. 223 – 249, Liss, New York.

    Google Scholar 

  • Lundgren, D. G., Boucheron, J., and Mahony, W., 1984, Geomicrobiology of iron: Mechanisms of ferric iron reduction, in: Recent Progress in Biohydrometallurgy, Proceedings of the International Symposium on Biohydrometallurgy, Cagliari, Italy ( G. Rossi and A. Torma, eds.), pp. 55 – 69, Assoc. Mineraria Sarda, Iglesias, Italy.

    Google Scholar 

  • Lyalikova, N. N., 1974, Stibiobacter senarmontii, a new microorganism oxidizing antimony, Mikrobiologiia 43: 941 – 948.

    CAS  Google Scholar 

  • Malacinski, G. M., and Konetzka, W. A., 1967, Orthophosphite-nicotinamide adenine dinucleotide ox- idoreductase from Pseudomonas fluorescens, J. Bacteriol. 93: 1906 – 1010.

    PubMed  CAS  Google Scholar 

  • Marshall, K. C., 1979, Biogeochemistry of manganese minerals, in: Biogeochemical Cycling of Mineral- Forming Elements( P. A. Trudinger and D. J. Swaine, eds.), pp. 369 – 395, Elsevier, New York.

    Google Scholar 

  • McClure, M. A., and Wyckoff, R. W. G., 1982, Ultrastructural characteristics of Sulfolobus acidocaldarius, J. Gen. Microbiol. 128: 433 – 437.

    Google Scholar 

  • McConnell, D., 1979, The biogeochemistry of phosphate minerals, in: Biogeochemical Cycling of Mineral- Forming Elements( P. A. Trudinger and D. J. Swaine, eds.), pp. 163 – 204, Elsevier, New York.

    Chapter  Google Scholar 

  • McCready, K. A., and Ratledge, C., 1979, Ferrimycobactin reductase activity from Mycobacterium smegmatis, J. Gen. Microbiol. 113: 67 – 72.

    CAS  Google Scholar 

  • Moore, R. L., 1981, The genera Hyphomicrobium, Pedomicrobium mdHyphomonas, in: The Prokaryotes( M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, eds.), pp. 480 – 487, Springer-Verlag, New York.

    Google Scholar 

  • Mulder, E. G., and Deinema, M. H., 1981, The sheathed bacteria, in: The Prokaryotes( M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, eds.), pp. 425 – 440, Springer-Verlag, New York.

    Google Scholar 

  • Nealson, K. H., 1983, The microbial manganese cycle, in: Microbial Geochemistry( W. E. Krumbein, ed.), pp. 191 – 221, Blackwell Scientific, Boston.

    Google Scholar 

  • Neilands, J. B., 1973, Microbial iron transport compounds (Siderochromes), in: Inorganic Biochemistry, Vol. 1 ( G. L. Eichhorn, ed.), pp. 167 – 202, Elsevier, New York.

    Google Scholar 

  • Neilands, J. B., 1981a, Iron adsorption and transport in microorganisms, Ajtnu. Rev. Nutr. 1: 27 – 46.

    Article  CAS  Google Scholar 

  • Neilands, J. B., 1981b, Microbial iron compounds, Annu. Rev. Biochem. 50:715–731.

    Google Scholar 

  • Norris, P. R., and Kelly, D. P., 1981, The use of mixed microbial cultures in metal recovery, in: Microbial Interactions and Community Structure( A. T. Bull and J. H. Slater, eds.), pp. 443 – 474, Academic, London.

    Google Scholar 

  • Norris, P. R., Brierley, J. A., and Kelly, D. P., 1980, Physiological characteristics of two facultative thermophilic mineral oxidizing bacteria, FEMS Microbiol. Lett. 7: 119 – 122.

    Article  CAS  Google Scholar 

  • Obuekwe, C. 0., and Westlake, D. W. S., 1982, Effects of medium composition on cell pigmentation, cytochrome content, and ferric iron reduction in a Pseudomonassp. isolated from crude oil, Can. J. Microbiol. 28: 989 – 992.

    Article  PubMed  CAS  Google Scholar 

  • Ottow, J. C. G., 1968, Evolution of iron-reducing bacteria in soil and the physiological mechanism of iron reduction in Aerobacter aerogenes, Z. Allg. Microbiol. 8: 441 – 443.

    Article  CAS  Google Scholar 

  • Ottow, J. C. G., 1969, Mechanism of iron-reduction by nitrate reductase in inducible aerobic microorganisms, Naturwissenschaften 7: 371 – 375.

    Article  Google Scholar 

  • Page, W. J., and Huyer, M., 1984, Derepression of the Azotobacter vinelandiisiderophore system, using iron containing minerals to limit iron repletion, J. Bacteriol. 158: 496 – 502.

    PubMed  CAS  Google Scholar 

  • Pivovarova, T. A., and Lyalikova, N. N., 1980, Morphogenesis and fine structure of Stibiobacter senarmontii, Mikrobiologiia 49: 502 – 506.

    PubMed  CAS  Google Scholar 

  • Pivovarova, T. A., Markosyan, G. E., and Karavaiko, G. I., 1981, Morphogenesis and fine structure of Leptospirillum ferrooxidans, Mikrobiologiia 50: 482 – 486.

    Google Scholar 

  • Pivovarova, T. A., Miller, Y. M., Krasheninikova, S. A., Kapistin, O. A., and Karavaiko, G. I., 1982, Role of phospholipids in the fractionation of stable isotopes of sulfur in its oxidation by Thiobacillus ferrooxidans, Mikrobiologiia 51: 552 – 556.

    PubMed  CAS  Google Scholar 

  • Pooley, F. D., 1982, Bacteria accumulate silver during leaching of sulfide ore minerals, Nature (London) 296: 642 – 643.

    Article  CAS  Google Scholar 

  • Postgate, J. R., 1979, The Sulfate Reducing Bacteria, Cambridge University Press, London.

    Google Scholar 

  • Postgate, J. R., 1982, Economic importance of sulfur bacteria, Philos. Trans. R. Soc. Lond. [Biol.] 298: 563 – 581.

    Article  Google Scholar 

  • Ralph, B. J., 1979, Oxidative reactions in the sulfur cycle, in: Biogeochemical Cycling of Mineral-Forming Elements( P. A. Trudinger and D. J. Swaine, eds.), pp. 369 – 395, Elsevier, New York.

    Chapter  Google Scholar 

  • Raymond, K. N., and Carrano, C. J., 1979, Coordination chemistry and microbial iron transport. Am. Chem. Soc. Accnts. Chem. Res., 12: 183 – 190.

    CAS  Google Scholar 

  • Roberts, J. K., 1947, Reduction of ferric hydroxide by strains of Bacillus polymyxa, Soil Sci. 63: 135 – 140.

    Article  CAS  Google Scholar 

  • Rozenberg, L. A., 1950, Physiological conditions for bacterial precipitation of calcium, Mikrobiologiia 19: 420 – 427.

    Google Scholar 

  • Schopf, J. M., Ehlers, E. G., Stiles, D. V., and Birle, J. D., 1965, Fossil iron bacteria preserved in pyrite, Proc. Am. Philos. Soc. 109: 288 – 308.

    Google Scholar 

  • Schottel, J., 1978, The mercuric and organomercurial detoxifying enzymes from a plasmid bearing strain of Escherichia coli, J. Biol. Chem. 253: 4341 – 4349.

    PubMed  CAS  Google Scholar 

  • Silver, M., 1978, Metabolic mechanisms of iron-oxidizing Thiobacilli, in: Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena( L. E. Murr, A. E. Torma, and J. A. Brierley, eds.), pp. 3 – 17, Academic, New York.

    Google Scholar 

  • Silverman, M. P., 1979, Biological and organic decomposition of silicates, in: Biogeochemical Cycling of Mineral-Forming Elements( P. A. Trudinger and D. J. Swaine, eds.), pp. 445 – 465, Elsevier, New York.

    Chapter  Google Scholar 

  • Silverman, M. P., and Lundgren, D. G., 1959, Studies on the chemoautotrophic iron bacteria Ferrobacillus ferrooxidans. II. Manometric studies, J. Bacteriol. 7: 326 – 331.

    Google Scholar 

  • Silverman, M. P., and Ehrlich, H. L., 1964, Microbial formation and degradation of minerals, Adv. Appl.Microbiol. 4: 153 – 205.

    Article  Google Scholar 

  • Singer, P. C., and Strumm, W., 1970, Acid mine drainage: The rate determining step, Science 167: 1121 – 1123.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, J., 1982, Reduction of ferric iron in anaerobic, marine sediments and interaction with reduction of nitrate and sulfate, Appl. Environ. Microbiol. 43: 319 – 324.

    PubMed  CAS  Google Scholar 

  • Starkey, R. L., and Halvorson, H. O., 1927, Studies on the transformation of iron in nature. II. Concerning the importance of microorganisms in the solution and precipitation of iron, Soil Sci. 24: 381 – 402.

    Article  CAS  Google Scholar 

  • Tait, G. H., 1975, The identification and biosynthesis of siderophores formed by Micrococcus denitrificans, Biochem. J. 146: 191 – 204.

    PubMed  CAS  Google Scholar 

  • Taylor, G. H., 1979, Biogeochemistry of uranium minerals, in: Biogeochemical Cycling of Mineral-Forming Elements( P. A. Trudinger and D. J. Swaine, eds.), pp. 369 – 395, Elsevier, New York.

    Google Scholar 

  • Temple, K. L., and Colmer, A. R., 1951, The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans, J. Bacteriol. 62: 605 – 611.

    PubMed  CAS  Google Scholar 

  • Tesic, A., and Tudorovic, M., 1953, Sur la question de l’espèce des “bacteries silicates,” in: Atti VI Cong. Int. Nat. Microbiol. Roma 6:356–361.

    Google Scholar 

  • Torma, A. E., 1971, Microbial oxidation of synthetic cobalt, nickel and zinc sulfide by Thiobacillus ferrooxidans, Rev. Can. Biol. 30: 209 – 216.

    PubMed  CAS  Google Scholar 

  • Torma, A. E., and Bosecker, K., 1982, Bacterial leaching, Prog. Indust. Microbiol. 16: 77 – 118.

    CAS  Google Scholar 

  • Torma, A. E., and Habashi, F., 1972, Oxidation of copper selenide by Thiobacillus ferrooxidans, Can. J. Microbiol. 18: 1750 – 1981.

    Article  Google Scholar 

  • Torma, A. E., and Subramanian, K. N., 1974, Selective bacterial leaching of a lead sulfide concentrate, Int. J. Min. Proc. 1: 125 – 134.

    Article  CAS  Google Scholar 

  • Troshanov, E. P., 1968, Iron and manganese-reducing microorganisms in ore-containing lakes of the Karelian Isthmus, Mikrobiologiia 37: 934 – 940.

    PubMed  CAS  Google Scholar 

  • Trudinger, P. A., 1971, Microbes, metals, and minerals, Min. Sci. Eng. 3: 13 – 25.

    CAS  Google Scholar 

  • Trudinger, P. A., 1982, Geological significance of oxidoreduction by bacteria, Philos. Trans. R. Soc. Lond [Biol.] 298: 563 – 581.

    Article  CAS  Google Scholar 

  • Trudinger, P. A., and Swain, D. J., 1979, Biogeochemical Cycling of Mineral-Forming Elements, Elsevier, New York.

    Google Scholar 

  • Tuovinen, O. H., Niemela, S. I., and Gyllenberg, H. G., 1971, Tolerance of Thiobacillus ferrooxidansto some metals, Antonie van Leeuwenhoek 37: 489 – 496.

    Article  PubMed  CAS  Google Scholar 

  • Wagegg, W., and Braun, V., 1981, Ferric citrate transport in Escherichia colirequires outer membrane receptor protein FecA, J. Bacteriol. 145: 156 – 163.

    PubMed  CAS  Google Scholar 

  • Wakao, N., Mishina, M., Sakurai, Y., and Shiota, H., 1982, Bacterial pyrite oxidation. I. The effect of pure and mixed cultures of Thiobacillus ferrooxidansand Thiobacillus thiooxidanson release of iron, J. Gen. Appl. Microbiol. 28: 331 – 343.

    Article  CAS  Google Scholar 

  • Wakao, N., Mishina, M., Sakurai, Y., and Shiota, H., 1983, Bacterial pyrite oxidation. II. The effect of various organic substances on release of iron from pyrite by Thiobacillus ferrooxidans, J. Gen. Appl. Microbiol. 29: 177 – 185.

    Article  CAS  Google Scholar 

  • Walsh, F., and Mitchell, R., 1972, An acid-tolerant iron-oxidizing Metallogenium, J. Gen. Microbiol. 72: 369 – 376.

    CAS  Google Scholar 

  • Weber, M. M., Lenoff, H. M., and Kaplan, N. O., 1956, The reduction of inorganic iron and cytochrome cby flavin enzymes, J. Biol. Chem. 220: 93 – 104.

    PubMed  CAS  Google Scholar 

  • Weinberg, E. D. (ed.), 1977, Microorganisms and Minerals, Dekker, New York.

    Google Scholar 

  • Weiss, R. L., 1973, Attachment to sulfur in extreme environments, J. Gen. Microbiol. 77: 501 – 507.

    CAS  Google Scholar 

  • Wong, C., Silver, M., and Kushner, D. J., 1982, Effects of chromium and manganese on Thiobacillus ferrooxidans, Can. J. Microbiol. 28: 536 – 544.

    Article  CAS  Google Scholar 

  • Zajic, J. E., 1969, Microbial Biogeochemistry, Academic, New York.

    Google Scholar 

  • Zillig, W., Stetter, K. O., Wunderl, S., Schultz, W., Priess, H., and Scolz, I., 1980, The Sulfolo- bus-Caldariella” Group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerases, Arch. Microbiol. 125: 259 – 269.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Lundgren, D.G. (1989). Biotic and Abiotic Release of Inorganic Substances Exploited by Bacteria. In: Poindexter, J.S., Leadbetter, E.R. (eds) Bacteria in Nature. Bacteria in Nature, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0803-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0803-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8090-3

  • Online ISBN: 978-1-4613-0803-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics