Skip to main content

Chemical Unity and Diversity in Bacterial Catabolism

  • Chapter
Bacteria in Nature

Part of the book series: Bacteria in Nature ((BANA,volume 3))

Abstract

The theme of this chapter is bacterial metabolic diversity. The wide range of catabolic activities displayed by bacteria is emphasized and interpreted according to the principles established for abiotic chemical systems. Before this remarkable catabolic versatility is discussed, however, it is useful to note some biochemical features that bacteria share with other living forms. The role of catabolic sequences in the life of the bacterial cell is also mentioned and is compared with the function performed by microbial enzymes in maintaining the degradative segment of the terrestrial carbon cycle.

Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M., 1981, Biodegradation of chemicals of environmental concern, Science 211:132–138.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J. J., and Dagley, S., 1980, Heat evolution of microbial catabolism: Effects of monooxygenases, J. Bacteriol. 143: 525 – 538.

    PubMed  CAS  Google Scholar 

  • Anthony, R. S., and Spector, L. B., 1972, Phosphorylated acetate kinase: Its isolation and activity, J. Biol. Chem. 247: 2120 – 2125.

    PubMed  CAS  Google Scholar 

  • Apajalahti, J. H. A., and Salkinoja-Salonen, M. S., 1987, Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus, J. Bacteriol 169: 5125 – 5130.

    PubMed  CAS  Google Scholar 

  • Axcell, B. C., and Geary, P. J., 1975, Purification and some properties of a soluble benzene-oxidizing system from a strain of Pseudomonas, Biochem. J. 146:173–183.

    PubMed  CAS  Google Scholar 

  • Ballou, D. P., 1982, Flavoprotein monooxygenases, in: Flavins and Flavoproteins (V. Massey and C. H. Williams, eds.), pp. 301–310, Elsevier, New York.

    Google Scholar 

  • Bannerjee, D., Sanders, L. E., and Sokatch, J. R., 1970, Properties of a purified methylmalonate semialdehyde dehydrogenase of Pseudomonas aeruginosa, J. Biol. Chem. 245:1828–1835.

    Google Scholar 

  • Bartels, I., Knackmuss, H.-J., and Reineke, W., 1984, Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by halocatechols, Appl. Environ. Microbiol. 47:500–505.

    PubMed  CAS  Google Scholar 

  • Bissett, D. L., and Anderson, R. L., 1974a, Lactose and D-galactose metabolism in group N streptococci: Presence of enzymes for both the D-galactose 1-phosphate and D-tagatose 6-phosphate pathways, J. Bacteriol. 117:318–320.

    Google Scholar 

  • Bissett, D. L., and Anderson, R. L., 1974b, Genetic evidence for the physiological significance of the D- tagatose 6-phosphate pathway of lactose and D-galactose degradation in Staphylococcus aureus, J. Bacteriol. 119:698$#x2013;704.

    Google Scholar 

  • Blaschkowski, H. P., Neuer, G., Ludwig-Festl, M., and Knappe, J., 1982, Routes of flavodoxin and ferridoxin reduction in Escherichia coli, Eur. J. Biochem. 123:563–569.

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal, H. J., 1966, D-Glucarate dehydrase, Methods Enzymol. 9:660–665.

    Article  CAS  Google Scholar 

  • Britton, L. N., Brand, J. M., and Markovetz, A. J., 1974, Source of oxygen in the conversion of 2-tridecanone to undecyl acetate by Pseudomonas cepacia and Nocardia sp., Biochim. Biophys. Acta 369:45–49.

    PubMed  CAS  Google Scholar 

  • Catellani, D., Fiechi, A., and Galli, E., 1971, (+)-β-Carboxymethyl-β-methyl-Aa-butenolide, a 1,2-ring-fission product of 4-methylcatechol by Pseudomonas desmolyticum, Biochem. J. 121:89–92.

    Google Scholar 

  • Chapman, P. J., 1979, Degradation mechanisms, in: Microbial Degradation of Pollutants in Marine Environments (A. W. Bourquin and P. H. Pritchard, eds.), pp. 28–66, U. S. Environmental Protection Agency, Gulf Breeze, Florida.

    Google Scholar 

  • Collins worth, W. L., Chapman, P. J., and Dagley, S., 1973, Stereospecific enzymes in the degradation of aromatic compounds by Pseudomonas putida, J. Bacteriol. 113: 922 – 931.

    PubMed  CAS  Google Scholar 

  • Crawford, R. L., 1981, Lignin Biodegradation and Transformation, Wiley, New York.

    Google Scholar 

  • Crawford, R. L., Hutton, S. W., and Chapman, P. J., 1975, Purification and properties of gentisate 1,2- dioxygenase from Moraxella osloensis, J. Bacteriol. 121: 794 – 799.

    PubMed  CAS  Google Scholar 

  • Cripps, R. E., 1975, The microbial metabolism of acetophenone. Metabolism of acetophenone and some chloroacetophenones by an Arthrobacterspecies, Biochem. J. 152: 233 – 241.

    PubMed  CAS  Google Scholar 

  • Crosby, D. G., 1972, Environmental photooxidation of pesticides, in: Degradation of Synthetic Organic Molecules in the Biosphere, pp. 260$#x2013;278, National Academy of Sciences, Washington, D. C.

    Google Scholar 

  • Dagley, S., 1975, A biochemical approach to some problems of environmental pollution, Essays Biochem. 11: 81$#x2013;138

    PubMed  CAS  Google Scholar 

  • Dagley, S., 1978, Pathways for utilization of organic growth substrates, in: The Bacteria, Vol. 11 ( L. N. Ornston and J. R. Sokatch, eds.), pp. 305$#x2013;388, Academic, New York.

    Google Scholar 

  • Dagley, S., 1982a, 4-Hydroxy-4-methyl-2-ketoglutarate aldolase from Pseudomonas putida, Methods Enzymol. 90:272-276.

    Google Scholar 

  • Dagley, S., 1982b, 4-Hydroxy-2-ketopimelate aldolase, Methods Enzymol. 90:277$#x2013;280.

    Google Scholar 

  • Dagley, S., 1982c, The role of flavoproteins in aromatic catabolism, in: Flavins andFlavoproteins( V. Massey and C. H. Williams, eds.), pp. 301$#x2013;310, Elsevier, New York.

    Google Scholar 

  • Dagley, S., and Nicholson, D. E., 1970, An Introduction to Metabolic Pathways, Blackwell Scientific, Oxford.

    Google Scholar 

  • Donnelly, M. I., and Dagley, S., 1980, Production of methanol from aromatic acids by Pseudomonas putida, J. Bacteriol. 142: 916$#x2013;924.

    PubMed  CAS  Google Scholar 

  • Donnelly, M. I., and Dagley, S., 1981, Bacterial degradation of 3,4,5-trimethoxycinnamic acid with production of methanol, J. Bacteriol. 147: 471 $#x2013; 476.

    PubMed  CAS  Google Scholar 

  • Donoghue, N. A., Norris, D. B., and Trudgill, P. W., 1976, The purification and properties of cyclohexanone oxygenase from Nocardia globerulaCL1 and AcinetobacterNCIB 9871, Eur. J. Biochem. 63: 175–192.

    Article  PubMed  CAS  Google Scholar 

  • Evans, W. C., 1977, Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments, Nature (Lond.) 270: 17–22.

    Article  CAS  Google Scholar 

  • Ghosal, D., You, I.-S., Chatterjee, D. K., and Chakrabarty, A. M., 1985, Microbial degradation of halogen- ated compounds, Science 228: 13–142.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, D. T., and Subramanian, V., 1984, Microbial degradation of aromatic hydrocarbons, in: Microbial Degradation of Organic Compounds( D. T. Gibson, ed.), pp. 181–252, Dekker, New York.

    Google Scholar 

  • Gibson, D. T., Roberts, R. L., Wells, M. C., and Kobal, V. M., 1973, Oxidation of biphenyl by aBeijerinckiaspecies, Biochem. Biophys. Res. Commun.50: 211–219.

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk, G., 1986, Bacterial Metabolism, 2nd ed., Springer-Verlag, New York.

    Book  Google Scholar 

  • Griffin, M., and Trudgill, P. W., 1976, Purification and properties of cyclopentanone oxygenase of PseudomonasNCIB 9872, Eur. J. Biochem. 63: 199$#x2013;209.

    Article  PubMed  CAS  Google Scholar 

  • Haddock, B. A., and Jones, C. W., 1977, Bacterial respiration, Bacteriol. Rev. 41: 47$#x2013;99.

    PubMed  CAS  Google Scholar 

  • Haggblom, M. M., Apajalahti, J. H. A., and Salkinoja-Salonen, M. S., 1988, Degradation of chlorinated phenolic compounds occurring in pulp mill effluents, Wat. Sci. Tech. 20: 205$#x2013;208.

    CAS  Google Scholar 

  • Hareland, W. A., Crawford, R. L., Chapman, P. J., and Dagley, S., 1975, Metabolic function and properties of 4-hydroxyphenylacetic acid 1-hydroxylase from Pseudomonas acidovorans, J. Bacteriol. 121: 272$#x2013;285.

    PubMed  CAS  Google Scholar 

  • Healy, J. B., and Young, L. Y., 1978, Catechol and phenol degradation by a methanogenic population of bacteria, Appl. Environ. Microbiol.35: 216$#x2013;218.

    PubMed  CAS  Google Scholar 

  • Healy, J. B., and Young, L. Y., 1979, Anaerobic biodegradation of eleven aromatic compounds to methane, Appl. Environ. Microbiol. 38: 84$#x2013;89.

    PubMed  CAS  Google Scholar 

  • Hopper, D. J., and Chapman, P. J., 1971, Gentisic acid and its 3- and 4-methyl-substituted homologues as intermediates in the bacterial degradation of m-cresol, 3,5-xylenol and 2,5-xylenol, Biochem. J. 122:19$#x2013;28.

    Google Scholar 

  • Hopper, D. J., Chapman, P. J., and Dagley, S., 1968, Enzymic formation of D-malate, Biochem. J. 110:798$#x2013;800.

    Google Scholar 

  • Hopper, D. J., Chapman, P. J., and Dagley, S., 1970, Metabolism of L-malate and D-malate by a species of Pseudomonas, J. Bacteriol. 104: 1197$#x2013;1202.

    PubMed  CAS  Google Scholar 

  • Hopper, D. J., Chapman, P. J., and Dagley, S., 1971, The enzymic degradation of alkyl-substituted gentisates, maleates and malates, Biochem. J. 122: 29$#x2013;40.

    PubMed  CAS  Google Scholar 

  • Howarth, R. W., and Teal, J. M., 1979, Sulfate reduction in a New England salt march, Limnol. Oceanogr. 24: 999$#x2013;1013.

    Article  CAS  Google Scholar 

  • Hultquist, D. E., Moyer, R. W., and Boyer, P. D., 1966, The preparation and characterization of 1-phos- phohistidine and 3-phosphohistidine, Biochemistry5: 322 – 331.

    Article  PubMed  CAS  Google Scholar 

  • Husain, M., Entsch, B., Ballou, D. P., Massey, V., and Chapman, P. J., 1980, Fluoride elimination from substrates in hydroxylation reactions catalyzed by p-hydroxybenzoate hydroxylase, J. Biol. Chem.255: 4189 – 4197.

    PubMed  CAS  Google Scholar 

  • Kersten, P. J., Dagley, S., Whittaker, J. W., Arciero, D. M., and Lipscomb, J. D., 1982, 2-Pyrone-4,6- dicarboxylic acid, a catabolite of gallic acids in Pseudomonas species, J. Bacteriol. 152:1154–1162.

    Google Scholar 

  • Kersten, P. J., Chapman, P. J., and Dagley, S., 1985, Enzymatic release of halogens or methanol from some substituted protocatechuic acids, J. Bacteriol 162: 693$#x2013;697.

    PubMed  CAS  Google Scholar 

  • Kobayashi, S., Kuno, S., Itada, N., Hayaishi, O., Kozuka, S., and Oae, S., 1964, O18 studies on anthranilate hydroxylase—A novel mechanism of double hydroxylation, Biochem. Biophys. Res. Commun. 16:556$#x2013;561.

    Google Scholar 

  • Kojima, Y., Kujisawa, H., Nakazawa, A., Nakazawa, T., Kanetsuna, F., Taniuchi, H., Nozaki, M., and Hayaishi, O., 1967, Studies on pyrocatechase. I. Purification and spectral properties, J. Biol. Chem. 242: 3270$#x2013;3278.

    PubMed  CAS  Google Scholar 

  • Kovachevich, R., and Wood, W. A., 1955a, Carbohydrate metabolism by Pseudomonas fluorescens. II. Purification and properties of a 6-phosphogluconate dehydrase, J. Biol. Chem. 213: 745$#x2013;756.

    CAS  Google Scholar 

  • Kovachevich, R., and Wood, W. A., 1955b, Carbohydrate metabolism by Pseudomonas fluorescens. III. Purification and properties of a 2-keto-3-deoxy-6-phosphogluconate aldolase, J. Biol. Chem. 213:757$#x2013;767.

    Google Scholar 

  • Lipmann, F., 1941, Metabolic generation and utilization of phosphate bond energy, Adv. Enzymol. 1: 99–162.

    CAS  Google Scholar 

  • Miller, D. J., 1981, Toluate metabolism in nocardioform actinomycetes: Utilization of the enzymes of the 3- oxoadipate pathway for the degradation of methyl-substituted analogues, in: Actinomycetes(K. P. Schaal and G. Pulverer, eds.), Zentralbl. Bakteriol. Suppl. II Gustav Fisher Verlag, Stuttgart.

    Google Scholar 

  • Nakazawa, H., Inou, H., and Takeda, Y., 1963, Characteristics of catechol oxygenase from Brevibacterium fuscum, J. Biochem. 54: 65$#x2013;74.

    Google Scholar 

  • Novogrodski, A., and Meister, A., 1964, Control of asparate β-decarboxylase activity by transamination, J. Biol. Chem. 239: 879$#x2013;888.

    Google Scholar 

  • Ohmori, T., Ikai, T., Minoda, Y., and Yamada, K 1973, Utilization of polyphenyl and polyphenyl-related compounds by microorganisms. I. Agric. Biol. Chem. 37: 1599$#x2013;1605.

    Article  CAS  Google Scholar 

  • Patel, R. N., Hou, C. T., Felix, A., and Lillard, M. O., 1976, Catechol-1,2-dioxygenase from Acinetobacter calcoaceticus: Purification and properties, J. Bacteriol. 127: 536$#x2013;544.

    PubMed  CAS  Google Scholar 

  • Plimmer, J. R., 1972, Principles of photodecomposition of pesticides, in: Degradation of Synthetic Organic Molecules in the Biosphere, pp. 279$#x2013;290, National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Powlowski, J., and Dagley, S., 1982, Anthranilate hydroxylase (deaminating) from Trichosporon cutaneum, in: Flavins and Flavoproteins( V. Massey and C. H. Williams, eds.), pp. 339$#x2013;341, Elsevier, New York.

    Google Scholar 

  • Powlowski, J., and Dagley, S., 1985, The p-ketoadipate pathway in Trichosporon cutaneummodified for methyl-substituted metabolites, J. Bacteriol. 163: 1126$#x2013;1135.

    PubMed  CAS  Google Scholar 

  • Que, L., Jr., Windom, J., and Crawford, R. L., 1981, 3,4-Dihydroxyphenylacetate 2,3-dioxygenase. A manganese (11) dioxygenase from Bacillus brevis, J. Biol. Chem. 256:10941$#x2013;10944.

    Google Scholar 

  • Reineke, W., 1984, Microbial degradation of halogenated aromatic compounds, in: Microbial Degradation of Organic Compounds( D. T. Gibson, ed.), pp. 319$#x2013;360, Dekker, New York.

    Google Scholar 

  • Reiner, A. M., and Hegeman, G. C., 1971, Metabolism of benzoic acid by bacteria. Accumulation of (-)-3,5- cyclohexadiene-l,2-diol-l-carboxylic acid by a mutant strain of Alcaligenes eutrophus, Biochemistry 10: 2530$#x2013;2535.

    Article  PubMed  CAS  Google Scholar 

  • Ryerson, C. C., Ballou, D. P., and Walsh, C., 1982, Mechanistic studies on cyclohexanone oxygenase, Biochemistry 21: 2644$#x2013;2655.

    Article  PubMed  CAS  Google Scholar 

  • Showe, M. K., and DeMoss, J. A., 1968, Localization and regulation of synthesis of nitrate reductase in Escherichia coli, J. Bacteriol. 95: 1305$#x2013;1313.

    PubMed  CAS  Google Scholar 

  • Sparnins, V. L., and Dagley, S., 1975, Alternative routes of aromatic catabolism in Pseudomonas acidovoransand Pseudomonas putida: Gallic acid as a substrate and inhibitor of dioxygenases, J. Bacteriol. 124:1374$#x2013;1381.

    Google Scholar 

  • Sparnins, V. L., Burbee, D. G., and Dagley, S., 1979, Catabolism of L-tyrosine in Trichosporon cutaneum, J. Bacteriol. 138: 425$#x2013;430.

    PubMed  CAS  Google Scholar 

  • Stouthamer, A. H., 1973, A theoretical study on the amount of ATP required for synthesis of microbial cell material, Antonie van Leeuwenhoek J. Microbiol. Serol.39: 545$#x2013;565.

    Article  CAS  Google Scholar 

  • Strayer, R. F., and Tiedje, J. M., 1978, In situ methane production in a small hypereutrophic, hard-water lake. Loss of methane from sediments by vertical diffusion and ebullition, Limnol. Oceanogr. 23: 1201 – 1206.

    Article  CAS  Google Scholar 

  • Subramanian, V., Liu, T.-N., Yeh, W.-K., Narro, M., and Gibson, D. T., 1981, Purification and properties of NADH-ferredoxin (TOL) reductase, a component of toluene dioxygenase from Pseudomonas putida, J. Biol. Chem. 256: 2723 – 2730.

    PubMed  CAS  Google Scholar 

  • Suflita, J. M., Horowitz, A., Shelton, D. R., and Tiedje, J. M., 1982, Dehalogenation: A novel pathway for the anaerobic biodegradation of haloaromatic compounds, Science 218: 1115 – 1117.

    Article  PubMed  CAS  Google Scholar 

  • Thauer, R. K., Jungermann, K., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol Rev. 41: 100$#x2013;180.

    PubMed  CAS  Google Scholar 

  • Tien, M., and Kirk, T. K., 1984, Lignin-degrading enzyme from Phanerochaete chrysosporium. Purification, characterization, and catalytic properties of a unique H202-requiring oxygenase, Proc. Natl. Acad. Sci. USA 81: 2280$#x2013;2284.

    Article  PubMed  CAS  Google Scholar 

  • Trudgill, P. W., 1984, Microbial degradation of the alicyclic ring, in: Microbial Degradation of Organic Compounds( D. T. Gibson, ed.), pp. 131$#x2013;180, Dekker, New York.

    Google Scholar 

  • Walsh, C., 1979, Enzymatic Reaction Mechanisms, W. A. Freeman, San Francisco.

    Google Scholar 

  • Walsh, C. T., and Spector, L. B., 1971, A phosphoenzyme intermediary in phosphoglycerate kinase action, J. Biol. Chem. 246: 1255$#x2013;1261.

    PubMed  Google Scholar 

  • White-Stevens, R. H., and Kamin, H., 1972, Studies of a flavoprotein, salicylate hydroxylase. I. Preparation, properties and the uncoupling of oxygen reduction from hydroxylation, J. Biol. Chem. 247: 2358–2370.

    PubMed  CAS  Google Scholar 

  • Wierenga, R. K., Kalk, K. H., van der Laan, J. M., Drenth, J., Hofsteenge, J., Weijer, W. J., Jekel, P. A., Beintema, J. J. Muller, F., and van Berkel, W. J. H., 1982, The structure of p-hydroxybenzoate hydroxylase, in: Flavins and Flavoproteins( V. Massey and C. H. Williams, eds.), pp. 11$#x2013;18, Elsevier, New York.

    Google Scholar 

  • Williams, V. R., and Lartigue, D. J., 1967, Quaternary structure and certain allosteric properties of aspartase, J. Biol. Chem. 242: 2973$#x2013;2978.

    PubMed  CAS  Google Scholar 

  • Wolin, M. J., 1979, The rumen fermentation: A model for microbial interactions in anaerobic ecosystems, in: Advances in Microbial Ecology, Vol. 3 ( M. Alexander, ed.), pp. 49$#x2013;77, Plenum, New York.

    Google Scholar 

  • Wood, J. M., 1980, Recent progress on the mechanism of action of dioxygenases, in: Metal Ion Activation of Dioxygen( Wood, J. M., ed.), pp. 165$#x2013;180, New York.

    Google Scholar 

  • Wood, W. A., 1972, 2-Keto-3-deoxy-6-phosphogluconic and related aldolases, in: The Enzymes, Vol. 7, 3rd ed. (P. D. Boyer, ed.), pp. 281–302, Academic, New York.

    Chapter  Google Scholar 

  • Young, L. Y., 1984, Anaerobic degradation of aromatic compounds, in: Microbial Degradation of Organic Compounds( D. T. Gibson, ed.), pp. 487$#x2013;523, Dekker, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Dagley†, S. (1989). Chemical Unity and Diversity in Bacterial Catabolism. In: Poindexter, J.S., Leadbetter, E.R. (eds) Bacteria in Nature. Bacteria in Nature, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0803-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0803-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8090-3

  • Online ISBN: 978-1-4613-0803-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics