Advertisement

Chemistry and Metabolism of Intracellular Reserves

  • Jack Preiss
Part of the Bacteria in Nature book series (BANA, volume 3)

Abstract

Many bacteria are able to accumulate polymers that are considered to function as energy reserves. These compounds may accumulate during growth or at the end of the growth phase and provide either energy or a source of a component no longer available from the environment.

Keywords

Glycogen Synthesis Glycogen Phosphorylase cAMP Receptor Protein Polyphosphate Kinase Aerobacter Aerogenes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agostini, D. E., Lando, J. B., and Shelton, J. R., 1971, Synthesis and characterization of poly-β-hydroxybutyrate I. synthesis of crystalline DL-poly-β-hydroxybutyrate from DL-β-butyrolactone, J. Polymer Sci. 9: 2775 – 2787.Google Scholar
  2. Aiking, H., Sterkenburg, A., and Tempest, D. W., 1977, The occurrence of polyphosphates in Candida utilisNCYC 321, Grown in chemostat cultures under conditions of potassium and glucose limitation, FEMS Lett. 1: 251 – 254.Google Scholar
  3. Allan, R. A., and Miller, J. J., 1980, Influence of S-adenosylmethionine on 4', 6-di-amidino-2-phenylindole dihydrochloride (DAPI)-induced fluorescence of polyphosphate in the yeast vacuole, Can. J. Microbiol. 26: 912 – 120.PubMedGoogle Scholar
  4. Alper, R., Lundgren, D. G., Marchessault, R. H., and Cote, W. A., 1963, Properties of poly-β-hydroxybutyrate. I. General considerations concerning the naturally occurring polymer, Biopolymers 1: 545 – 556.Google Scholar
  5. Antoine, A. D., and Tepper, B. S., 1969a, Characterization of glycogens from Mycobacteria, Arch. Biochem. Biophys. 134:207–213.Google Scholar
  6. Antoine, A. D., and Tepper, B. S., 1969c, Environmental control of glycogen and lipid content of Mycobacterium phlei, J. Bacteriol. 100:538–539.Google Scholar
  7. Argast, M., and Boos, W., 1980, Co-regulation in Escherichia coliof a novel transport system for sn-Glycerol-3-phosphate and outer membrane protein Ic(e,E) with alkaline phosphatase and phosphate binding protein, J. Bacteriol. 143: 142 – 150.PubMedGoogle Scholar
  8. Atkinson, D. E., 1970. Enzymes as control elements in metabolic regulation, The Enzymes, Vol. 1, 3rd ed. (Paul D. Boyer, ed.), pp. 461–469, Academic, New York.Google Scholar
  9. Auling, G., Reh, M., Lee, C. M., and Schlegel, H. G., 1978, Pseudomanas pseudoflava, a new species of hydrogen-oxidizing bacteria: Its differentiation from Pseudomonas flavaand other yellow-pigmented, gram negative hydrogen-oxidizing species, Int. J. Syst. Bacteriol. 28: 82 – 95.Google Scholar
  10. Baecker, P. A., Furlong, C. E., and Preiss, J., 1983, Biosynthesis of bacterial glycogen primary structure of Escherichia coliADP glucose synthetase as deduced from the nucleotide sequence of the glgC gene, J. Biol. Chem. 258: 5084 – 5088.PubMedGoogle Scholar
  11. Baecker, P. A., Greenberg, E., and Preiss, J., 1986, Biosynthesis of bacterial glycogen: Primary structure of Escherichia coliα-1,4 glucan: α-1,4 glucan 6-glycosyl-transferase as deduced from the nucleotide sequence of the glgB gene J. Biol. Chem. 261: 8738 – 8743.PubMedGoogle Scholar
  12. Baker, A. L., and Schmidt, G., 1963, Intracellular distribution of phosphorus during synchronous growth of Chlorella pyrenoidosa, Biochem. Biophys. Acta 74: 75 – 83.Google Scholar
  13. Barlow, D. J., Van Rensburg, W. L. J., Pieterse, A. J. H., and Eloff, J. H., 1979, Effect of phosphate concentration on the fine structure of the cyanobacterium, microcystis aeruginosa Kuetz. Emend. Elenbin, J. Limnol. Soc. S. Afr. 5: 79 – 83.Google Scholar
  14. Barry, C., Gavard, R., Milhaud, G., and Aubert, J. P., 1952, Sur le glycogen de Bacillus megatherium, Compt. Rendu 235: 1062 – 1064.Google Scholar
  15. Baxter, M., and Jensen, T. E., 1980a, A study of methods for in situ X-ray energy dispersive analysis of polyphosphate bodies in Piectonema boryanum, Arch. Microbiol. 126:213–215.Google Scholar
  16. Baxter, M., and Jensen, T. E., 1980b, Uptake of magnesium, strontium, barium and manganese by Plectonema boryanum (cyanophycae) with special reference to polyphosphate bodies, Protoplasma 104:81–89.Google Scholar
  17. Behrens, N. H., and Cabib, E., 1968, The biosynthesis of mannan in Saccharomyces carlsbergenesis, J. Biol. Chem. 243: 502 – 509.PubMedGoogle Scholar
  18. Bender, H., 1970, Pullulanase von Aerobacter aerogenes, Arch. Mikrobiol. 71: 331 – 352.PubMedGoogle Scholar
  19. Bender, H., and Wallenfels, K., 1961, Pullulanase (an amyiopecnn and glycogen debranching enzyme) from Aerobacter aerogenes, Methods Enzymol. 8: 555 – 559.Google Scholar
  20. Bender, H., and Wallenfels, K., 1966, Untersuchungen an pullulan II spezifischer abbau durch ein backterielles enzym, Biochem. Z. 334: 79 – 95.Google Scholar
  21. Bergemyer, H. U., Gawehu, K., Klotzsch, H., Krebs, H. A., and Williamson, D. H., 1967, Purification and properties of crystalline 3-hydroxybutyrate dehydrogenase from Rhodopseudomonas spheroides, Biochem. J. 102: 423 – 431.Google Scholar
  22. Birkhed, D., and Tanzer, J. M., 1979, Glycogen synthesis pathway in Streptococcus mutansstrain NCTC 10449s and its glycogen synthesis-defective mutant 805 Arch. Oral Biol. 24: 67 – 73.PubMedGoogle Scholar
  23. Boatman, E. S., and Douglas, H. C., 1963, Membrane of poly-β-hydroxybutyrate granules of Rhodospirillum rubrum, J. Appl. Phys. 34: 2528.Google Scholar
  24. Bobyk, M. A., Afinogenova, A. V., Dubinskaya, M. V., Lambina, V. A., and Kulaev, I. S., 1980, Detection of polyphosphates and enzymes of polyphosphate metabolism Bdellovibrio bacteriovorus, Zentralbl. Bakteriol. Mikrobiol. Hyg. [A] 135: 461 – 466.Google Scholar
  25. Boyer, C., and Preiss, J., 1977, Biosynthesis of Bacterial glycogen purification and properties of the Escherichia coliB α-1,4 glucan: α-l,4-glucan 6-glycosylitransferase, Biochemistry 16: 3693 – 3699.PubMedGoogle Scholar
  26. Boylen, C. W., and Ensign, J. C., 1970, Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of Arthrobacter crystallopoietes, J. Bacteriol. 103: 578 – 587.PubMedGoogle Scholar
  27. Brana, A. F., Manzanal, M. B., and Hardisson, C., 1980, Occurrence of polysaccharide granules in sporulating hyphae of Streptomyces viridochromogenes, J. Bacteriol. 144: 1139 – 1142.PubMedGoogle Scholar
  28. Brana, A. F., Manzanal, M. B., and Hardisson, C., 1982, Characterization of intracellular polysaccharides of Streptomyces, Can. J. Microbiol. 28: 1320 – 1323.PubMedGoogle Scholar
  29. Breed, R. S., Murray, E. G. D., and Smith, N. R. 1957, Bergey’s Manual of Determinative Bacteriology, 7th ed., Williams & Wilkins, Baltimore.Google Scholar
  30. Bridger, W. A., and Paranchych, W., 1978, Rel A gene control of bacterial glycogen synthesis, Can. J. Biochem. 56: 403 – 406.PubMedGoogle Scholar
  31. Buchanan, B. B., and Evans, M. C. W., 1965, The synthesis of phosphoenolpyruvate from pyruvate and ATP by extracts of photosynthetic bacteria. Biochem. Biophys. Res. Commun. 22:484–487,Google Scholar
  32. Buchanan, B. B., Evans, M. C. W., and Arnon, D. I,, 1967, Ferrodoxin-dependent carbon assimilation Rhodospirillum rubrum, Arch. Microbiol. 59: 32 – 40.Google Scholar
  33. Buehner, M., and Bender, C., 1978, crystallization and crystallographic data of Escherichia coli maltodextrin phosphorylase, FEBS Lett. 85:91–94.Google Scholar
  34. Burleigh, I. G., and Dawes, E. A., 1967, Studies on the endogenous metabolism and senescence of starved Sarcina lutea, Biochem. J. 102: 236 – 250.PubMedGoogle Scholar
  35. Burt, C T., Glonek, T., and Barany, M, 1977, Analysis of living tissue by phosphorus-31 magnetic resonance, Science 195: 145 – 149.PubMedGoogle Scholar
  36. Campbell, J. III, Stevens, S. E. Jr., and Balkwili, D. L., 1982, Accumulation of poly-β-hydroxybutryate in Spirullina platensis, J. Bacteriol. 149: 361 – 363.PubMedGoogle Scholar
  37. Capon, R. J., Dunlop, R. W., Ghisalberti, E. L., and Jefferies, P. R., 1983, Poly-3 hydroxyalkanoates from marine and freshwater cyanobacteria, Phytochemistry 22: 1181 – 1184.Google Scholar
  38. Carlson, C. A., Parsons, T. F., and Preiss, J., 1976, Biosynthesis of bacterial glycogen: Activator induced olegomerization of a mutant Escherichia coliADP glucose synthase, J. Biol. Chem. 251: 7866 – 7892.Google Scholar
  39. Carr, N. G., 1966, The occurrence of poly-hydroxybutyrate in the blue-green algae, Chlorogloea fritschii, Biochem. Biophys. Acta 120: 308 – 310.PubMedGoogle Scholar
  40. Carr, N. G., and Lascelles, J., 1961, Some enzymatic reactions concerned in the metabolism of acetoacetyl-coenzyme A in Athiorhodaceae, Biochem. J. 80: 70 – 77.PubMedGoogle Scholar
  41. Carr, N. G., and Sandhu, G. R., 1966, Endogenous metabolism of polyphosphates in two photosynthetic microorganisms, Biochem. J. 99:29P–30P.Google Scholar
  42. Carter, I. S., and Dawes, E. A., 1979, Effect of O2 concentration and growth rate on glucose metabolism, poly-β-hydroxybutyrate biosynthesis and respiration of Azotobacter bejerinckii, J. Gen. Microbiology 110: 393 – 400.Google Scholar
  43. Cattaneo, J., Damotte, M., Sigal, N., Sanchez-Medina, G., and Puig, J., 1969, Genetic studies of Escherichia coliK12 mutants with alterations in glycogenesis and properties of an altered adenosine diphosphate glucose pyrophosphorylase, Biochem. Biophys. Res. Commun. 34: 694 – 701.PubMedGoogle Scholar
  44. Chambost, J. P., Favard, A., and Cattaneo, J., 1967, Purification et proprieties diene α-Amylase endocellulaire d’Escherichia coli, Bull. Soc. Chim. Biol. 49: 1231 – 1246.PubMedGoogle Scholar
  45. Chao, J., and Weathersbee, C. J., 1974, Regulation of maltodextrin phosphorylase synthesis in Escherichia coliby cyclic adenosine 3´5´ monophosphate and glucuse, J. Bacteriol. 117: 181 – 188.PubMedGoogle Scholar
  46. Chargaff, E., and Moore, D. H., 1944, On bacterial glycogen: The isolation from avian tubercle basilli of a polyglucosan of very high particle weight, J. Bacteriol. Chem. 155: 493 – 501.Google Scholar
  47. Chen, G. S., and Segel, I. H., 1968a, Escherichia coli polyglucose phosphorylases, Arch. Biochem. Biophys. 127:164–174.Google Scholar
  48. Chen, G. S., and Segel, I. H., 1968b, Purification and properties of glycogen phosphorylase from Escherichia coli, Arch. Biochem. Biophys. 127:175–186.Google Scholar
  49. Chowdhury, A. A., 1963, Poly-β-hydroxybuttersaure abbauende bakterien and exoenzyme, Arch. Microbiol. 47: 167 – 200.Google Scholar
  50. Coleman, J. R., Nilsson, J. R., Warner, R. R., and Batt, P., 1972, Qualitative and quantitative electron probe analysis of cytoplasmic granules in Tetrahymena pyriformis, Exp. Cell Res. 74: 207 – 219.PubMedGoogle Scholar
  51. Cook, A. M., and Schlegel, H. G., 1978, Metabolite concentration in Alicaligeneseutrophus H16 and a mutant defective in poly-β-hydroxybutyrate synthesis, Arch. Microbiol. 119: 231 – 235.Google Scholar
  52. Cornibert, J., and Marchessault, R. H., 1972, Physical properties of poly-β-hydroxybutyrate IV conformational analysis and crystalline structure, J. Mol. Biol. 71: 735 – 756.PubMedGoogle Scholar
  53. Cornibert, J., Marchessault, R. H., Benoit, H., and Weill, G., 1970, Physical properties of poly-β-hydroxybutyrate III folding of helical segments in 2,2,2-trifluorethanol, Macromolecules 3: 741 – 746.Google Scholar
  54. Cozzarelli, N. R., Freedburg, W. E., and Lin, E. C. C., 1968, Genetic control of the L-α-glycerophosphate system in Escherichia coli, J. Mol. Biol. 31: 371 – 387.PubMedGoogle Scholar
  55. Crabtree, K., McCoy, E., Boyle, W. C., and Rohlich, G. A., 1965, Isolation, identification and metabolic role of the sudanophilic granules of Zooglea ramigera, Appl. Microbiol. 13: 218 – 226.PubMedGoogle Scholar
  56. Creuzat-Sigal, N., and Frixon, C., 1977, Catabolism of glycogen in Escherichia coli, FEBS Microbiol. Lett. 1: 235 – 238.Google Scholar
  57. Creuzat-Sigal, N., Latil-Damotte, M., Cattaneo, J., and Puig, J., 1972, Genetic analysis and biochemical characterization of mutants impairing glycogen metabolism in Escherichia coliK12, in: Biochemistry of Glycosidic Linkage( R. Piras and H. G. Pontis, eds.) pp. 647 – 680, Academic, New York.Google Scholar
  58. Dalton, H., and Postgate, J. R., 1969, Effect on oxygen on growth of Azotobacter chroococcumin batch and continuous cultures, J. Gen. Microbiol. 54: 463 – 473.Google Scholar
  59. Damotte, M., Cattaneo, J., Sigal, N., and Puig, J., 1968, Mutants of Escherichia coliK12 altered in their ability to store glycogen, Biochem. Biophys. Res. Commun. 32: 916 – 920.PubMedGoogle Scholar
  60. Darvill, R. G., Hall, M. A., Fish, J. P., and Morris, J. G., 1977, The intracellular reserve polysaccharide of Glostridium pasteurianum, Can. J. Microbiol. 23: 947 – 953.PubMedGoogle Scholar
  61. Davis, J. B., 1964, Cellular lipids of a Nocardiagrown on propane and n-butane, Appl. Microbiol. 12: 301 – 304.PubMedGoogle Scholar
  62. Dawes, E. A., 1975, The role and regulation of poly-β-hydroxybutyrate as a reserve in microorganisms, in: Proceedings of the International Symposium on Macromolecules, Rio de Janeiro( E. B. Mano, ed.), pp. 433 – 450, Elsevier, Amsterdam.Google Scholar
  63. Dawes, E. A., and Ribbons, D. W., 1964, Some aspects of the endogenous metabolism of bacteria, Bacteriol. Rev. 28: 126 – 149.PubMedGoogle Scholar
  64. Dawes, E. A., and Senior, P. J., 1973, Energy reserve polymers in microorganims, Adv. Microbiol. Physiol. 10: 135 – 266.Google Scholar
  65. Deinema, M. H., Habets, L. H. A., Scholten, J., Turkstra, E., and Webers, H. A. A. M., 1980, The accumulation of polyphosphate in Acinetobacter, spp., FEMS Lett. 9: 275 – 279.Google Scholar
  66. Delafield, F. P., Cooksey, K. E., and Doudoroff, M., 1965a, –-Hydroxybutyrate dehydrogenase and dimer esterase of Pseudomonas lemoignei, J. Biol. Chem. 240:4023–4028.Google Scholar
  67. Delafield, F. P., Doudoroff, M., Palleroni, N. J., Lusty, C. J., and Contopoulos, R., 1965b, Decomposition of poly-–-hydroxybutyrate by pseudomonads, J. Bacteriol. 90:1455–1466.Google Scholar
  68. Dessein, A., and Schwartz, M., 1974, Is there a pullulanase in Escherichia coli?, Eur. J. Biochem. 45:363– 366.Google Scholar
  69. Dietzler, D. N., and Strominger, J. L., 1973, Purification and properties of the adenosine diphosphoglucose: Glycogen transglucosylase of Pasteurella pseudotuberculosis, J. Bacteriol. 113: 946 – 952.PubMedGoogle Scholar
  70. Dietzler, D. N., Leckie, M. P., Lais, C. J., and Magnani, J. L., 1974, Evidence for the allosteric regulation of bacterial glycogen synthesis in vivo, Arch. Biochem. Biophys. 162: 602 – 606.PubMedGoogle Scholar
  71. Dietzler, D. N., Leckie, M. P., Lais, C. J., and Magnani, J. L., 1975, Evidence for the allosteric regulation of glycogen synthesis in the intact Escherichia colicell. Agreement of the values of the parameters of the Hill equation fitted to data for glycogen synthesis in vivowith the available values obtained in vitrowith adenosine diphosphoglucose synthetase, J. Biol. Chem. 250: 2383 – 2387.PubMedGoogle Scholar
  72. Dietzler, D. N., Lecikie, M. P., Sternheim, W. L., Taxman, T. L., Unger, J. M., and Porter, S. E., 1977, Evidence for the regulation of bacterial glycogen synthesis by cyclic AMP, Biochem. Biophys. Res. Commun. 77: 1468 – 1477.PubMedGoogle Scholar
  73. Dietzler, D. N., Leckie, M. P., Magnani, J. L., Sughrue, M. H., Bergstein, P. E., and Sternheim, W. L., 1979, Contribution of cyclic adenosine, 3´5´-monophosphate to the regulation of bacterial glycogen synthesis in vivo. Effect of carbon source and cyclic adenosine 3´: 5´ monophosphate on the quantitative relationship between the rate of glycogen synthesis and the cellular concentrations of glucose 6-phosphate and fructose 1,6-diphosphate in Escherichia coli, J. Biol. Chem. 254: 8308 – 8317.PubMedGoogle Scholar
  74. Dirheimer, G., and Ebel, J. P., 1965, Caracterisation d’une polyphosphate AMP-phosphotransferase dans Corynebacterium xerosis, C. R. Hebd. Seanc. Acad. Sci. Paris 260: 3787 – 3790.Google Scholar
  75. Dirheimer, G., and Ebel, J. P., 1968, Purification et properties d’une glucosamine 6-phosphotransferase á partir de Corynebacterium xerosis, Bull. Soc. Chim. Biol. 50: 1933 – 1947.PubMedGoogle Scholar
  76. Doudoroff, M., 1966, Metabolism of poly-β-hydroxybutyrate in bacteria, in: Current Aspects of Biochemical Energetics( N. O. Kaplan and E. P. Kennedy, eds.), pp. 385 – 400, Academic, New York.Google Scholar
  77. Doudoroff, M., and Stanier, R. Y., 1959, Role of poly-β-hydroxybutyric acid in the assimilaton of organic carbon by bacteria, Nature (Lond.) 183: 1440 – 1442.Google Scholar
  78. Doudoroff, M., Hassid, W. Z., Putman, E. W., Porter, A. L., and Lederberg, J., 1949, Direct utilization of maltose by Escherichia coli, J. Biol. Chem. 179: 921 – 934.PubMedGoogle Scholar
  79. Drews, G., 1960a, Electronenmikroskopische untersuchungen an Mycobacterium phlei, Arch. Mikrobiol. 35:53–62.Google Scholar
  80. Drews, G., 1960b, Untersuchungen zum polyphosphatstoffwechsel und der bildung metachromatischer granula bei Mycobacterium phlei, Arch. Mikrobiol. 36:387–430.Google Scholar
  81. Drews, G., 1962, The cytochemistry of polyphosphates, Colloq. Intern. Cent. Natl. Rech. Sci. (Paris) 106: 533 – 539.Google Scholar
  82. Drozd, J., and Postgate, J. R., 1970, Effects of oxygen on acetylene reduction, cytochrome content and respiratory activity of Azotobacter chrococcum, J. Gen. Microbiol. 63: 63 – 73.PubMedGoogle Scholar
  83. Duguid, J. P., Smith, I. W., and Wilkinson, J. F., 1954, Volutin production in Bacterium aerogenesdue to development of an acid reaction, J. Pathol. 67: 289 – 300.Google Scholar
  84. Echols, H., Garen, A., Garen, S., and Torriani, A., 1961, Genetic control of repression of alkaline phosphatase in E. coli, J. Mol. Biol. 3: 425 – 438.PubMedGoogle Scholar
  85. Egorov, S. N., and Kulaev, J. S., 1976, The isolation and properties of tripolyphosphatase from the fungus Neurospora crassa, Biokhimiia 41:1958–1967 [in Russian].Google Scholar
  86. Egorova, L. A., Bobyk, M. A., Loginova, L. G., and Kulaev, I. S., 1981, Features of polyphosphate metabolism in the thermophilic bacterium Thermus flavus, Mikrobiologia 50: 603 – 606.Google Scholar
  87. Eidels, L., and Preiss, J., 1970, Carbohydrate metabolism in Rhodopseudomonas capsulata: Enzyme titers, glucose metabolism and polyglucose polymer synthesis, Arch. Biochem. Biophys. 140: 75 – 89.PubMedGoogle Scholar
  88. Eisenberg, R. J., Elchisak, M., and Lai, C., 1974, Glycogen accumulation by pleomorphic cells of Streptococcus sanguis, Biochem. Biophys. Res. Commun. 57: 959 – 966.PubMedGoogle Scholar
  89. Elbein, A. D., and Mitchell, M., 1973, Levels of glycogen and trehalase in Mycobacterium smegmatis, and the purification and properties of the glycogen synthetase, J. Bacteriol. 113: 863 – 876.PubMedGoogle Scholar
  90. Ellar, D., Lundgren, D. G., Okamura, K., and Marchessault, R. H., 1968, Morphology of poly-β-hydroxybutyrate granules, J. Mol. Biol. 35: 489 – 502.PubMedGoogle Scholar
  91. Emeruwa, A. C., 1981, Isolation and metabolism of glycogen and poly-β-hydroxybutyrate in Nocardia asteroidesat different developmental stages, Ann. Microbiol. (Paris) 132B: 13 – 21.Google Scholar
  92. Emeruwa, A. C., and Hawirko, R. Z., 1973, Poly-β-hydroxybutyrate metabolism during growth and sporulation of Clostridium botulinum, J. Bacteriol. 116: 989 – 993.PubMedGoogle Scholar
  93. Eroshina, N. V., Bobyk, M. A., Termkhitarova, N. G., and Golovlev, E. L., 1980, Peculiarities of carbohydrate metabolism in corynefoun bacteria, Mikrobiologia 69: 508 – 513.Google Scholar
  94. Ferguson, S. J., Gadian, D. G., and Kell, D. B., 1979, Evidence from 31P nuclear magnetic resonance that polyphosphate synthesis is a slip reaction in Paracoccus denitrificans, Biochem. Soc. Trans. 7: 176 – 179.PubMedGoogle Scholar
  95. Forsyth, W. G. C., Hayward, A. C., and Roberts, J. B., 1958, Occurrence of poly-β-hydroxybutyric acid in aerobic gram-negative bacteria, Nature (Lond.) 182: 800 – 801.Google Scholar
  96. Fottrell, P. F., and O’Hora, A., 1969, Multiple forms of D(–)-3-hydroxybutyrate dehydrogenase in Rhizobium, J. Gen. Microbiol. 57: 287 – 292.PubMedGoogle Scholar
  97. Friedberg, I., and Avigad, G., 1968, Structures containing polyphosphate in Micrococcus lysodeikticus, J. Bacteriol. 96: 544 – 553.PubMedGoogle Scholar
  98. Fuhs, G. W., and Chew, M., 1975, Refractive index of uranyl-treated bacterial cytoplasm as related to ribonucleic acid content and growth rate, Microbiol. Ecol. 2: 119 – 125.Google Scholar
  99. Fukui, T., Yoshimoto, A., Matsumoto, M., Hosokawa, S., Saito, T., Nishikawa, H., and Timita, K., 1976, Enzymatic synthesis of poly-β-hydroxybutyrate in Zoologea ramigera, Arch. Microbiol. 110: 149 – 156.PubMedGoogle Scholar
  100. Gavard, R., Dahinger, A., Hauttecoeur, B., and Raynaud, C., 1966. Dégradation du lipid β-hydroxybutyrique par un extrait enzymatique de Bacillus megateriumI depolymerase A, C. R. Acad. Sci. Paris 263: 1273 – 1275.Google Scholar
  101. Gavard, R., Raynaud, C., Hauttecoeur, B., and Dahinger, A., 1967, Dégradation du lipide β-hydroxybutyrique par un extrait enzymatique de Bacillus megateriumI depolymerase B, C. R. Acad. Sci. Paris 265: 1557 – 1559.Google Scholar
  102. German, R. J., Jones, A. S., and Nadayah, M., 1961, Polysaccharides of Mycobacterium phlei, Nature (Lond.) 189: 1008 – 1009.Google Scholar
  103. Gibbons, R. J., and Kapsimalis, B., 1963, Synthesis of intracellular iodophilic polysaccharide by Streptococcus mitis, Arch. Oral Biol. 8: 319 – 329.PubMedGoogle Scholar
  104. Glonek, T., Lunde, M., Mudget, M., and Myers, T. C., 1971, Studies of biological polyphosphate through the use of phosphorus-31 nuclear magnetic resonance, Arch. Biochem. Biophys. 142: 508 – 513.PubMedGoogle Scholar
  105. Goldemberg, S. H., 1972, Glycogen from thermophilic bacteria, Biochemistry of the Glycoside Linkage, Vol. 2 (R. Piras and H. G. Pontis, eds.), pp. 621–622, Academic, New York.Google Scholar
  106. Gosh, H. P., and Preiss, J., 1965, The isolation and characterization of glycogen from Arthrobactersp. NRRL B1973, Biochim. Biophys. Acta 104: 274 – 277.Google Scholar
  107. Govons, S., Vinopal, R., Ingraham, J., and Preiss, J., 1969, Isolation of mutants of Escherichia coliB altered in their ability to synthesize glycogen, J. Bacteriol. 97: 970 – 972.PubMedGoogle Scholar
  108. Govons, S., Gentner, N., Greenberg, E., and Preiss, J., 1973, Biosynthesis of bacterial glycogen XI kinetic characterization of an altered adenosine diphosphate glucose synthase from a “glycogen excess” mutant of Escherichia coliB, J. Biol. Chem. 248: 1731 – 1740.PubMedGoogle Scholar
  109. Greenberg, E., and Preiss, J., 1964, The occurrence of adenosine diphosphate glucose:glycogen transglucosylase in bacteria, J. Biol. Chem. 239: 4314 – 4315.PubMedGoogle Scholar
  110. Greenberg, E., Preiss, J. E., VanBoldrick, M., and Preiss, J., 1983, Biosynthesis of bacterial glycogen: activator specificity of the ADP glucose pyrophosphorylase of Rhodopseudomonads, Arch. Biochem. Biophys. 220: 594 – 604.PubMedGoogle Scholar
  111. Griebel, R. J., and Merrick, J. M., 1971, Metabolism of poly-β-hydroxybutyrate: Effect of mild alkaline extraction on native poly-β-hydroxybutyrate granules, J. Bacteriol. 108: 782 – 789.PubMedGoogle Scholar
  112. Griebel, R., Smith, Z., and Merrick, J. M., 1968, Metabolism of poly-β-hydroxybutyrate. I. Purification, composition and properties of native poly-β-hydroxybutyrate granules from Bacillus megaterium, Biochemistry 7: 3676 – 81.PubMedGoogle Scholar
  113. Guerrini, A. M., Barni, N., and Donini, P., 1980, Chromatographic separation and identification of short chain acid soluble polyphosphates from S. cerevisiae, J. Chromatogr. 189: 440 – 444.Google Scholar
  114. Gunja-Smith, Z., Marshall, J. J., Smith, E. E., and Whelan, W. J., 1970, A glycogen-debranching enzyme from Cytophaga, FEBS Lett. 12: 96 – 100.PubMedGoogle Scholar
  115. Hara, F., Akazawa, T., and Kojima, K., 1973, Glycogen biosynthesis in chromatium strain D. I. Characterization of glycogen, Plant Cell Physiol. 14: 737 – 745.Google Scholar
  116. Harold, F. M., 1960, Accumulation of inorganic polyphosphate in mutants of Neurospora crassa, Biochim. Biophys. Acta 45: 172 – 188.Google Scholar
  117. Harold, F. M., 1963, Accumulation of inorganic polyphosphate in Aerobacter aerogenes. I. Relationship to growth and nucleic acid synthesis, J. Bacteriol. 86: 216 – 221.PubMedGoogle Scholar
  118. Harold, F. M., 1964, Enzymatic and genetic control of polyphosphate accumulation in Aerobacter aerogenes, J. Gen. Microbiol. 35: 81 – 90.PubMedGoogle Scholar
  119. Harold, F. M., 1965, Regulatory mechanisms in the metabolism of inorganic polyphosphate in Aerobacter aerogenes, Colloq. Int. CNRS (Paris) 124: 307 – 315.Google Scholar
  120. Harold, F. M., 1966, Inorganic polyphosphates in biology: Structure, metabolism and function, Bacteriol. Rev. 30: 772 – 794.PubMedGoogle Scholar
  121. Harold, R. L., and Harold, F. M., 1963, Mutants of Aerobacter aerogenesblocked in the accumulation of inorganic polyphosphates, J. Gen. Microbiol. 31: 241 – 246.PubMedGoogle Scholar
  122. Harold, F. M., and Harold, R. L., 1965, Degradation of inorganic polyphosphate in mutants of Aerobacter aerogenes, J. Bacteriol. 89: 1262 – 1270.PubMedGoogle Scholar
  123. Harold, F. M., and Sylvan, H., 1963, Accumulation of inorganic polyphosphate in Aerobacter aerogenes. II. Environmental control and the role of sulfur compounds, J. Bacteriol. 86: 222 – 231.PubMedGoogle Scholar
  124. Haugen, T., Ishaque, A., and Preiss, J., 1976, Biosynthesis of bacterial glycogen. Characterization of the subunit structure of Escherichia coliB glucose-1-P adenylyl transferase (E.C. 2.7.7.27), J. Biol. Chem. 251: 7880 – 7885.PubMedGoogle Scholar
  125. Hayward, A. C., Forsyth, W. G. C., and Roberts, J. B., 1959, Synthesis and breakdown of poly-β-hydroxybutyric acid by bacteria,in J. Gen. Microbiol. 20: 510 – 518.PubMedGoogle Scholar
  126. Hehre, E. J., and Hamilton, D. M., 1946, Bacterial synthesis of an amylopectin-like polysaccharide from sucrose, J. Biol. Chem 166: 777 – 778.PubMedGoogle Scholar
  127. Hehre, E. J., and Hamilton, D. M., 1948, The conversion of sucrose to a polysaccharide of the starch-glycogen class by Neisseriafrom the pharynx, J. Bacteriol. 55: 197 – 208.Google Scholar
  128. Hehre, E. J., Hamilton, D. M., and Carlson, A. S., 1949, Synthesis of a polysaccharide of the starch-glycogen class from sucrose by a cell-free bacterial enzyme system (amylosucrase), J. Biol. Chem. 177: 267 – 269.PubMedGoogle Scholar
  129. Hestrin, S., 1960, Synthesis of polymeric homopolysaccharides, in: The Bacteria, Vol. 3 ( R. C. Gunsalis and R. Y. Stainer, eds.) pp. 373 – 388, Academic, New York.Google Scholar
  130. Hippe, P., and Schlegel, H. G., 1967, Hydrolyse von PHBS durch intracellulase depolymerase von HydrogenomonasH16, Arch. Microbiol. 56: 278 – 299.Google Scholar
  131. Hirsh, P., and Conti, S. F., 1964, Biology of budding bacteria. I. Enrichment, isolation and morphology of Hyphomicrobiumspp., Arch. Microbiol. 48: 339 – 357.Google Scholar
  132. Hoffman-Ostenhof, O., 1962, Some biological functions of the polyphosphates, Colloq. Int. CNRS (Paris) 106: 640 – 650.Google Scholar
  133. Holme, T., 1957, Continuous culture studies on glycogen synthesis in Escherichia colistrain B, Acta Chem. Scand. 11: 763 – 775.Google Scholar
  134. Holme, T., and Palmstierna, H., 1956, Changes in glycogen and nitrogen-containing compounds in Escherichia coliB during growth in deficient media, Acta Chem. Scand. 10: 578 – 586.Google Scholar
  135. Holme, T., Laurent, T., and Palmstierna, H., 1957, On the glycogen in Escherichia coliB; variations in molecular weight during growth, Acta Chem. Scand. 11: 757 – 762.Google Scholar
  136. Holmes, E., Boyer, C., and Preiss, J., 1982, Immunological characterization of Escherichia coliB glycogen synthase from other bacteria and branching enzyme and comparison with enzymes from other bacteria, J. Bacteriol. 151: 1444 – 1453.PubMedGoogle Scholar
  137. Hughes, D. E., and Muhammed, A., 1962, The metabolism of polyphosphate in bacteria, Colloq. Int. CNRS (Paris) 106: 591 – 602.Google Scholar
  138. Huis, J. H. J., in’t Veld, O. D., and Dirks, O. B., 1978, Intracellular polysaccharide metabolism in Streptococcus mutans, Caries Res. 12: 243 – 249.Google Scholar
  139. Ingelman, B., and Malmgren, H., 1947, Enzymatic breakdown of polymetaphosphate, Acta Chem. Scand. 1: 422 – 432.Google Scholar
  140. Ingelman, B., and Malmgren, H., 1948, Enzymatic breakdown of polymetaphosphate. II, Acta Chem. Scand. 2: 365 – 380.Google Scholar
  141. Indge, K. J., 1968, Polyphosphates of the yeast cell vacuole, J. Gen. Microbiol. 5: 447 – 455.Google Scholar
  142. Jackson, F. A., and Dawes, E. A., 1976, Regulation of the tricarboxylic acid cycle and poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckiigrown under nitrogen or oxygen limitations, J. Gen. Microbiol. 97: 303 – 312.PubMedGoogle Scholar
  143. Jeaningros, R., Creuzat-Sigal, N., Frixon, C., and Cattaneo, J., 1976, Purification and properties of a debranching enzyme from Escherichia coli, Biochim. Biophys. Acta 438: 186 – 199.Google Scholar
  144. Jensen, T. E., 1968, Electron microscopy of polyphosphate bodies in a blue-green alga Nostoc pruniforme, Arch. Microbiol. 62: 144 – 152.Google Scholar
  145. Jensen, T. E., 1969, Fine structure of developing polyphosphate bodies in a blue-green alga Plectonema boryanum, Arch. Mikrobiol. 67: 328 – 338.Google Scholar
  146. Jensen, T. E., and Sicko, L. M., 1971, Fine structure of poly-β-hydroxybutyric acid granules in a blue-green alga Chloroglea fritschii, J. Bacteriol. 106: 683 – 686.PubMedGoogle Scholar
  147. Jensen, T. E., and Sicko, L. M., 1974, Phosphate metabolism in blue-green algae. I. Fine structure of the polyphosphate “overplus” phenomenon in Plectonema boryanum, Can. J. Bicrobiol. 20: 1235 – 1239.Google Scholar
  148. Jones, H. E., and Chambers, L. A., 1975, Localized polyphosphate formation by Desulfovibrio gigas, J. Gen. Microbiol. 89: 67 – 72.PubMedGoogle Scholar
  149. Jurtshuk, P., Manning, S., and Barrera, C. P., 1968, Isolation and purification of the D(-)-β-hydroxybutyric dehydrogenase of Azotobacter vinelandii, Can. J. Microbiol. 14: 775 – 783.PubMedGoogle Scholar
  150. Kaltwasser, J., 1962, Die rolle der polyphosphate in phosphatstoffwechsel eines knallgasbakteriums (Hydrogenomonas stamm20), Arch. Microbiol. 41: 282 – 306.Google Scholar
  151. Kaltwasser, H., and Schlegel, H. G., 1959, Nachweis und quantitative bestimmung der polyphosphate in wasserstaffoxydierender bakterien, Arch. Microbiol. 34: 76 – 92.Google Scholar
  152. Kamio, Y., Terawaki, Y., Nakajima, T., and Matsuda, K., 1981, Structure of glycogen produced by Selenomonas ruminantium, Agric. Biol. Chem. 45: 209 – 216.Google Scholar
  153. Kannan, L. V., and Rechacek, Z., 1970. Formation of poly-β-hydroxybutyrate by Actinomycetes, Indian J. Biochem. Biophys. 7: 126 – 129.PubMedGoogle Scholar
  154. Katchman, B. J., and Fetty, W. O., 1955, Phosphorus metabolism in growing cultures of Saccharomyces cerevisiae, J. Bacteriol. 69: 607 – 615.PubMedGoogle Scholar
  155. Kessel, M., 1977, Identification of a phosphorus-containing storage granule in the cyanobacterium Plectonoma boryanumby electron microscope X-ray microanalysis, J. Bacteriol. 129: 1502 – 1505.PubMedGoogle Scholar
  156. Khandelwal, R. L., Spearman, T. N., and Hamilton, I. R., 1973, Purification and properties of glycogen phosphorylase from Streptococcus, Arch. Biochem. Biophys. 154: 295 – 305.PubMedGoogle Scholar
  157. Kominek, L. A., and Halvorson, H. O., 1965, Metabolism of poly-β-hydroxybutyrate and acetoin in Bacillus cereus, J. Bacteriol. 90: 1251 – 1259.PubMedGoogle Scholar
  158. Konig, H., Skorko, R., Zillig, W., and Reiter, W. D., 1982, Glycogen in thermaocidophilic archaebacteria of the genera, Sulfolobus thermaproteus desulfurococcus and Thermococcus, Arch. Microbiol. 132: 297 – 303.Google Scholar
  159. Kornberg, A., Kornberg, S. R., and Simms, E. S., 1956, Metaphosphate synthesis by an enzyme from Escherichia coli, Biochim. Biophys. Acta 26: 215 – 227.Google Scholar
  160. Kornberg, A., 1957, Adenosine triphosphate synthesis from polyphosphate by an enzyme from Escherichia coli, Biochim. Biophys. Acta 26: 294 – 300.PubMedGoogle Scholar
  161. Kowallik, U., and Pringsheim, E. G., 1966, The oxidation of hydrogen sulfide by Beggiatoa, Am. J. Bot. 53: 801 – 806.Google Scholar
  162. Krebs, E. G., and Preiss, J., 1975, Regulatory mechanisms in glycogen metabolism, in: Biochemistry of Carbohydrates( W. J. Whelan, ed.), pp. 337 – 389, University Park Press, Baltimore.Google Scholar
  163. Kritsky, M. S., Chernysheva, E. K., and Kulaev, I. S., 1972, Polyphosphate depolymerase activity in cells of the fungus, Neurospora crassa, Biokhimiia 37:983–990 [in Russia].Google Scholar
  164. Kuhl, A., 1960, Die Biologie der kondensierten Anorganischen phosphate, Ergeb. Biol. 23: 144 – 185.Google Scholar
  165. Kulaev, I. S., and Bobyk, M. A., 1971, The detection of a new enzyme, 1,3-phosphoglycerate-polyphosphate phosphotransferase in Neurospora crassa, Biokhimiia 36:426–429 [in Russian].Google Scholar
  166. Kulaev, I. S., 1975, Biochemistry of inorganic polyphosphates, Rev. Physiol. Biochem. Pharmacol. 73: 131 – 158.PubMedGoogle Scholar
  167. Kulaev, I. S., 1979, The Biochemistry of Inorganic Polyphosphates, Wiley, New York.Google Scholar
  168. Kulaev, I. S., Bobyk, M. A., Nikolaev, N. N., Sergeev, N. S., and Uryson, S. O., 1971, The polyphosphate- synthesizing enzymes of some fungi and bacteria, Biokhimiia 36:943–949 [in Russian].Google Scholar
  169. Kulaev, I. S., Konoshenko, G. I., Chernysheva, E. K., and Kritsky, M. S., 1972a, The localization and possible physiological role of polyphosphate depolymerases in cells of Neurospora crassa, Dokl. Akad. Nauk SSSR 206:233–235 [in Russian].Google Scholar
  170. Kulaev, I. S., Konoshenko, G. I., and Umnov, A. M., 1912b, The localization of polyphosphates hydrolyzing polyphosphate to orthophosphates of Neurospora crassa in subcellular structures, Biokhimiia 37:227–232 [in Russian].Google Scholar
  171. Kulaev, I. S., Vagabov, V. M., and Tsiomenko, A. B., 1972c, The correlation between the accumulation of polysaccharides by the cell walls and some polyphosphate fractions in yeasts, Dokl. Akad. Nauk SSSR 204:734–736 [in Russian].Google Scholar
  172. Kulaev, I. S., Vorobeva, E. I., Konovalova, S. V., Bobyk, M. A., Konoshenko, G. I., and Uryson, S.O., 1973, Polyphosphate-metabolizing enzymes in the development of Propionibacterium shermanii under normal conditions and in the presence of polymyxin M, Biokhimiia 38:712–717 [in Russian].Google Scholar
  173. Kuleav, I. S., Vagabov, V. M., Tsiomenko, A. B., and Shabalin, Y. A., 1979, Study of the biosynthesis of yeast cell wall glycoproteins, Invest. SeveroKavkazsk. Nauch. Zent. Vysshei Shkoly 2: 80 – 87.Google Scholar
  174. Kulaev, I. S., and Vagabov, V. M., 1983, Polyphosphate metabolism in microorganisms, Adv. Microbiol. Physiol. 24: 83 – 171.Google Scholar
  175. Kumar, A., Larsen, C. E., and Preiss, J., 1986, Biosynthesis of bacterial glycogen: Primary structure of Escherichia coliADPglucose α-1,4-glucan, 4 glucosyl transferase as deduced from the nucleotide sequence of the glgA gene, J. Biol. Chem. 261: 16256 – 16259.PubMedGoogle Scholar
  176. Kutty, M. R., Kannon, L. V., and Rehacek, Z., 1969, Effects of phosphate on biosynthesis of antimycin A and production and utilization of poly-β-hydroxybutyrate by Streptomyces antibiotics, Indian J. Biochem. 6: 230 – 231.Google Scholar
  177. Lacks, S., 1968, Genetic regulation of maltosaccharide utilization in Pneumococcus, Genetics 60: 685 – 706.PubMedGoogle Scholar
  178. Langen, P., and Liss, E., 1958, Uber bildung und umsatz der polyphosphate der hefe, Biochem. Z. 30: 445 – 466.Google Scholar
  179. Langen, P., Liss, E., and Lohmann, W., 1962, Art, bildung and umsatz der polyphosphate der hefe, Colloq. Int. CNRS (Paris) 106: 603 – 612.Google Scholar
  180. Latil-Damotte, M., and Lares, C., 1977, Relative order of glgmutations affecting glycogen biosynthesis in Escherichia coliK12, Mol. Gen. Genet. 150:325–329. Law, J. H., and Slepecky, R. A., 1961, Assay of poly-β-hydroxybutyric acid, J. Bacteriol. 82: 33 – 36.Google Scholar
  181. Lawry, N. H., and Jensen, T. E., 1979, Deposition of condensed phosphate as an effect of varying sulfur deficiency in the cyanobacterium Synechococcussp. Anacystis nidulans, Arch. Microbiol. 120: 1 – 8.Google Scholar
  182. Leckie, M. P., Tieber, V. L., Porter, S. E., and Dietzler, D. N., 1980, The rel A gene is not required for glycogen accumulation during NH4 starvation of Escherichia coli, Biochem. Biophys. Res. Commun. 95: 924 – 931.PubMedGoogle Scholar
  183. Leckie, M. P., Ng, R. H., Porter, S. E., Compton, D. R., and Dietzler, D. N., 1983, Regulation of bacterial glycogen synthesis: Stimulation of glycogen synthesis by endogenous and exogenous cyclic adenosine 3´:5´- monophosphate in Escherichia coliand the requirements for a functional CRPgene, J. Biol. Chem. 258: 3813 – 3824.PubMedGoogle Scholar
  184. Lehmann, M., and Wober, G., 1976, Accumulation, mobilization and turnover of glycogen in the blue-green bacterium Anacystis nidulans, Arch. Microbiol. 111: 93 – 97.PubMedGoogle Scholar
  185. Lehmann, M., and Wober, G., 1978a, Enzymes of glycogen mobilization in the photosynthetic procaryote, Anacystis nidulans, Planta 143:63–65.Google Scholar
  186. Lehmann, M., and Wober, G., 1978b, Light dark modulation of glycogen phosphorylase activity in the blue- green alga, Anacystis nidulans, Plant Cell Environ. 1:155–160.Google Scholar
  187. Leloir, L. F., Olvarria, J. M., Goldemberg, S. H., and Carminatti, H., 1959, Biosynthesis of glycogen from uridine diphosphate glucose, Arch. Biochem. Biophys. 81: 508 – 520.PubMedGoogle Scholar
  188. Lemoigne, ML, 1925, Etudes sur l’autolyse microbienne acidification par formation d’acide oxybutyrique, Ann. Inst. Pasteur (Paris) 39: 144.Google Scholar
  189. Lemoigne, M., 1926, Produits de dehydration et de polymerisation de l’acide beta-oxybutyrique, Bull. Soc. Chim. Biol. 8: 770 – 782.Google Scholar
  190. Lemoigne, M., 1927, Etudes pur l’autolyse microbienne origine de l’acide β-hydroxy-butyrique formé par autolyse, Ann. Inst. Pasteur 41: 148 – 165.Google Scholar
  191. Lemoigne, M., and Girard, H., 1943, Beta-hydroxybutyric lipid reserves in Azotobacter chrococcum, C. R. Seanc. Acad. Sci. [III] 217: 557 – 558.Google Scholar
  192. Lemoigne, M., 1946, Fermination β-hydroxybutyrique, Helv. Chim. Acta 29: 1303 – 1306.Google Scholar
  193. Levin, G. V., and Shapiro, J., Polyphosphate accumulation in Acinetobacter J. Water Pollut. Control Fed. 37:800–803.Google Scholar
  194. Levine, S., Stevenson, H. J. R., Tabor, E. C., Bordner, R. H., and Chamgers, L. A., 1953, Glycogen of enteric bacteria, J. Bacteriol. 66: 664 – 672.PubMedGoogle Scholar
  195. Lichko, L. P., Okorokov, L. A., and Kulaev, I. S., 1982, Participation of vacuoles in regulation of levels of K+,Mg+ + and orthophosphate ions in cytoplasm of yeast Saccharomyces carlsbergenesis, Arch. Microbiol. 132: 289 – 293.Google Scholar
  196. Liebermann, L., 1888, Uber das nuclein der Hefe and kunetliche darstellung eines nuclein’s eiweiss und metaphosphorsaure, Ber. Dtsch. Chem. Ges. 21: 598.Google Scholar
  197. Lin, L. P., and Sadoff, H. L., 1968, Encystment and polymer production of Azotobacter vinelandii in the presence of β-hydroxybutyrate, J. Bacteriol. 95: 2336 – 2343.PubMedGoogle Scholar
  198. Linder, D., Kurz, G., Bender, H., and Wallenfels, K., 1976, 1,4-a-glucan phosphorylase from Klebsiella pneumoniae, Purification, subunit structure and amino acid composition, Eur. J. Biochem. 70:291–303.Google Scholar
  199. Lindner, J. G. E., Marcellis, J. H., DeVos, N. M., and Hoogkamp-Korstanje, 1979, Intracellular polysaccharide of Bacteroides fragilis, J. Gen. Microbiol. 111: 93 – 100.PubMedGoogle Scholar
  200. Liss, E., and Langen, P., 1960, Uber ein hochmolekulares polyphosphate der hefe, Biochem. Z. 333: 193 – 201.PubMedGoogle Scholar
  201. Liss, E., and Langen, P., 1962, Versuche zur polyphosphate-uberkompensation in hefezellen nach phosphatverarmung, Arch. Microbiol. 41: 383 – 392.Google Scholar
  202. Lohmann, K., and Langen, P., 1956, Untersuchungen an der kondensierten phosphaten der Hefe, Biochem Z. 328: 1 – 11.PubMedGoogle Scholar
  203. Ludwig, J. R. II, Oliver, S. G., and McLaughlin, C. S., 1977, The effect of amino acids on growth and phosphate metabolism in the prototrophic yeast strain, Biochem. Biophys. Res. Commun. 79: 16 – 23.PubMedGoogle Scholar
  204. Lundgren, D. G., Alper, R., Schnaitman, C., and Marchessault, R. H., 1965, Characterization of poly-β- hydroxybutyrate extracted from different bacteria, J. Bacteriol. 89: 245 – 251.PubMedGoogle Scholar
  205. Lusby, G. W., Jr., and McLaughlin, C. S., 1980, The metabolic properties of acid soluble polyphosphates in Saccharomyces cerevisiae, Mol. Gen. Genet. 178: 69 – 76.PubMedGoogle Scholar
  206. Lusty, C. J., and Doudoroff, M., 1966, Poly-β-hydroxybutyrate depolymerases of Pseudomonas lemoigeni, Proc. Natl. Acad. Sci. USA 56: 960 – 965.PubMedGoogle Scholar
  207. MacKenzie, C. R., Johnson, K. G., and McDonald, I. J., 1977, Glycogen synthesis by amylosucrase from Neisseria perflava, Can. J. Microbiol. 23: 1303 – 1307.PubMedGoogle Scholar
  208. Mackey, B. M., and Morris, J. G., 1971, Ultrastructural changes during sporulation of Clostridium pasteurianum, J. Gen. Microbiol. 66: 1 – 13.Google Scholar
  209. Mackey, B. H., and Morris, J. G., 1974, Isolation of a mutant strain of Clostridium pasteuraniumdefective in granulose degradation, FEBS Lett. 48: 64 – 67.PubMedGoogle Scholar
  210. Macrae, R. M., and Wilkinson, J. F., 1958a, Poly-–-hydroxybutyrate metabolism in washed suspension of Bacillus cereus and Bacillus megaterium, J. Gen. Microbiol. 19:210–222.Google Scholar
  211. Macrae, R. M., and Wilkinson, J. F., 1958b, The influence of the cultural conditions on poly-–-hydroxybutyrate synthesis in Bacullus megaterium, Proc. R. Phys. Soc. Edin. 27:73–78.Google Scholar
  212. Madigan, M. T., Cox, J. C., and Gest, H., 1980, Physiology of dark fermentative growth of Rhodopseudomonas capsulata, J. Bacteriol. 142: 908 – 915.PubMedGoogle Scholar
  213. Madsen, N. B., 1961, The occurence and enzymic synthesis of glycogen in extracts of Agrobacterium tumefaciens, Biochim. Biophys. Acta 50: 194 – 195.PubMedGoogle Scholar
  214. Madsen, N. B., 1963, The biological control of glycogen metabolism in Agrobacterium tumefaciens, Can. J. Biochem. Physiol 41: 561 – 571.Google Scholar
  215. Malik, K. A., Jung, C., Claus, D., and Schlegei, H. G., 1981, Nitrogen fixation by the hydrogen-oxidizing bacterium Alcaligenes latus, Arch. Microbiol. 129: 254 – 256.Google Scholar
  216. Mallette, M. F., 1963, Validity of the concept of energy of maintenance, Ann. NY Acad. Sci. 102: 521 – 535.PubMedGoogle Scholar
  217. Marchessault, R. H., Okamura, K., and Su, C. J., 1970, Physical properties of poly(β-hydroxybutyrate) II conformational aspects in solution, Macromolecules 3: 735 – 740.Google Scholar
  218. Marchessault, R. H., Coulombe, S., Morikawa, H., Okamura, K., and Revol, J. L., 1981, Solid state properties of poly-β-hydroxybutyrate and of its oligomers, Can. J. Chem. 59: 38 – 44.Google Scholar
  219. Maraeva, O. B., Nesmeyanova, M. A., and Kulaev, I. S., 1978, Effect of mutations in the regulator genes for alkaline phosphates on the phosphohydrolase spectrum of Escherichia coli periplasm, Biokhimiia 43:1640–1647 [in Russian].Google Scholar
  220. Marr, A. G., Nilson, E. H., and Clark, D. J., 1963, The maintenance requirement of Escherichia coli, Ann. NY Acad Sci. 102: 536 – 548.Google Scholar
  221. Matin, A., Veldhuis, C., Stegeman, V., and Veenhuis, M., 1979, Selective advantage of a Spirillumsp. in a carbon limited environment. Accumulation of poly-β-hydroxybutyric acid and its role in starvation, J. Gen. Microbiol. 112: 349 – 355.PubMedGoogle Scholar
  222. Martinez, R. J., 1963, On the nature of the granules of the genus Spirillum, 44: 334 – 343.Google Scholar
  223. Matsuhashi, M., 1963, Die trennung von polyphosphaten durch anionenaustrausch chromatographic, Z. Physiol. Chem. 333: 28 – 34.Google Scholar
  224. Mattenheimer, H., 1956a, Die substratsperzifitat –anorganischer– poly und metaphosphatosen. I. optimale wirkungsbedinungen fur den enzymatischer abbau von poly- und metaphosphaten, Hoppe Seylers Z. Physiol. Chem. 303:107–114.Google Scholar
  225. Mattenheimer, H., 1956b, Die substratsperzifitat –anorganischer– poly und metaphosphatosen. II. Trennung der enzyme, Hoppe Seylers Z. Physiol. Chem. 303:115–124.Google Scholar
  226. Mattenheimer, H., 1956c, Die substratsperzifitat –anorganischer– poly und metaphosphatosen. III. Papier chromatographische untersuchungen beim enzymatischen abbau von anorganischen poly-und metaphosphaten, Hoppe Seylers Z. Physiol. Chem. 303:125–139.Google Scholar
  227. McFarland, C. R., Boyle-Rockwell, P., and Rodriguez, J. F., 1981, Factors affecting polysaccharide storage in group A Streptococcus pyogenesin non-proliferating cell suspensions, J. Microbiol. 32: 143 – 154.Google Scholar
  228. de Meis, R., 1984, Pyrophosphate of high and low energy: Contributions of pH, Ca2+, Mg2+, and water to free energy of hydrolysis, J. Biol. Chem. 259: 6090 – 6097.PubMedGoogle Scholar
  229. Merrick, J. M., 1978, Metabolism of reserve materials, in: The Photosynthetic Bacteria( R. K. Clayton and W. R. Sistrom, eds.), pp. 199 – 218, Plenum, New York.Google Scholar
  230. Merrick, J. M., and Doudoroff, M., 1961, Enzymatic synthesis of poly-β-hydroxybutyric acid, Nature (Lond.) 189: 890 – 892.Google Scholar
  231. Merrick, J. M., and Doudoroff, M., 1964, Depolymerization of poly-β-hydroxybutyrate by an intracellular enzyme system, J. Bacteriol. 88(1): 60 – 71.PubMedGoogle Scholar
  232. Merrick, J. M., Delafield, F. P., and Doudoroff, M., 1962, Hydrolysis of poly-β-hydroxybutyrate by intracellular and extracellular enzymes, Fed. Proc. 21: 228.Google Scholar
  233. Merrick, J. M., and Yu, C. I., 1966, Purification and properties of a D(–)-β-hydroxybutyric dimer hydrolase from Rhodospirillum rubrum, Biochemistry 5: 3563 – 3568.PubMedGoogle Scholar
  234. Moskowitz, G. J., and Merrick, J. M., 1969, Metabolism of poly-β-hydroxybutyrate. II. Enzymatic synthesis of D(–)-β-hydroxybutyrl coenzyme A by an enoyl hydrate from Rhotospirillum rubrum, Biochemistry 8: 2748 – 2755.PubMedGoogle Scholar
  235. Mudd, S., Yoshida, A., and Koike, M., 1958, Polyphosphate as accumulator of phosphorus and energy. J. Bacteriol. 75: 224 – 235.PubMedGoogle Scholar
  236. Muhammed, A., 1961, Studies on biosynthesis of polymetaphosphate by an enzyme from Corynebacterium xerosis, Biochim. Biophys. Acta 54: 121 – 132.PubMedGoogle Scholar
  237. Muhammed, A., Rodgers, A., and Hughes, D. E., 1959, Purification and properties of a polymetaphosphatase from Corynebacterium xerosis, J. Gen. Microbiol. 20: 482 – 495.PubMedGoogle Scholar
  238. Muhlradt, P. F., 1971, Synthesis of a high molecular weight polyphosphate with partially purified enzyme from Salmonella, J. Gen. Microbiol. 68: 115 – 122.PubMedGoogle Scholar
  239. Mulder, E. G., and Zevenhuizen, L. P. T. M., 1967, Coryneform bacteria of the Arthrobactertype and their reserve material, Arch. Microbiol. 59: 345 – 354.Google Scholar
  240. Mulder, E. G., Dienema, M. H., Van Veen, W. L., and Zevenhuizen, L. P. T. M., 1962, Polysaccharides, lipids and poly-β-hydroxybutyrate in microorganisms, Recent Trav. Chim. Pays-Bas 81: 797 – 809.Google Scholar
  241. Muller-Felter, S., and Ebel, J. P., 1962, Séparation des acides ribonucléiques et des polyphosphates inorganiques. II. Mise au pout d’une technique de séparation par désorption differentielle sur charbon, Bull. Soc. Chim. Biol. 44: 1175 – 1184.PubMedGoogle Scholar
  242. Murata, K., Uchida, T., Tani, K., Kato, J., and Chibata, I., 1980, Metaphosphate: A new phosphoryl donor for NAD phosphorylation, Agric. Biol. Chem. 44: 61 – 68.Google Scholar
  243. Nakata, H. M., 1966, Role of acetate in sporogenesis of Bacillus cereus, J. Bacteriol. 91: 784 – 788.PubMedGoogle Scholar
  244. Navon, G., Ogawa, S., Shulman, R., and Yamane, T., 1977a, 31P nuclear magnetic resonance studies of Ehrlich ascites tumor cells, Proc. Natl. Acad Sci. USA 74:87–91.Google Scholar
  245. Navon, G., Ogawa, S., Shulman, R., and Yamane, T., 1977b, High resolution 31P nuclear magnetic resonance studies of metabolism in aerobic Escherichia coli cells, Proc. Natl. Acad. Sci. USA 74:888–891.Google Scholar
  246. Nesmeyanova, M. A., Dmitriev, A. D., Bobyk, M. A., and Kulaev, I. S., 1973a, On the regulation of some phosphorus metabolism enzymes in E. coli, in reaction mechanisms and control properties of phosphotransferases, in: Joint Biochemical Symposium UDSSR-DDR, p. 82, Reinhardsbrunn, Academie- Verlag, Berlin.Google Scholar
  247. Nesmeyanova, M. A., Dmitriev, A. D., and Kulaev, I. S., 1973b, High-molecular polyphosphates and poly-phosphate-metabolizing enzymes during the growth of a culture of Escherichia coli, Mikrobiologiia 42:213–219 [in Russian].Google Scholar
  248. Nesmeyanova, M. A., Dmitriev, A. D., and Kulaev, I. S., 1974a, The regulation of phosphorus metabolism and the level of polyphosphates in Escherichia coli K12 by exogenous phosphate, Mikrobiologiia 43:227–234 [in Russian].Google Scholar
  249. Nesmeyanova, M. A., Gonina, A., Severin, A. I., and Kulaev, I. S., 1974b, The metabolic regulation of phosphohydrolases in Escherichia coli, Microbiologiia 43:955–960 [in Russian].Google Scholar
  250. Nesmeyanova, M. A., Gonina, S. A., and Kulaev, I. S., 1975a, The biosynthesis of polyphosphatase in Escherichia coli under the control of genes in common with alkaline phosphatase, Dokl. Akad. Nauk. SSSR 224:710–712 [in Russian].Google Scholar
  251. Nesmeyanova, M. A., Maraeva, O. B., Severin, A. I., and Kulaev, I. S., 1975b, The localization of polyphosphatase in cells of Escherichia coli with repression and depression of the biosynthesis of this enzyme, Dokl. Akad. Nauk. SSSR 223:1266–1268 [in Russian].Google Scholar
  252. Nesmeyanova, M. A., Maraeva, O. B., Severin, A. I., Zaichkin, E. I., and Kulaev, I. S., 1976, The action of detergents and proteolytic enzymes on membrane-bound polyphosphohydrolases in cells of Escherichia coli with repressed and depressed biosynthesis of these enzymes, Biokhimiia 41:1256–1262 [in Russian].Google Scholar
  253. Nesmeyanova, M. A., Maraeva, O. B., Severin, A. I., and Kulaev, I. S., 1978, Metabolic and genetic control of isoenzyme spectrum of alkaline phosphatase in Escherichia coli, Folia Microbiol. (Praha) 23: 30 – 36.Google Scholar
  254. Nickerson, K. W., Zarnick, W. J., and Krames, V. E., 1981, Poly-β-hydroxybutyrate parasporal bodies in Bacillus thuringiensis, FEMS Lett. 12: 327 – 331.Google Scholar
  255. Nicolay, K., Hellingweif, K. J., Kaptein, R., and Konings, W. N., 1982, Carbon-13 nuclear magnatic resonance studies of acetate metabolism in intact cells of Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta 720: 250 – 258.PubMedGoogle Scholar
  256. Nicolay, K., van Gemerden, H., Hellingweif, K. J., Konings, W. N., and Kaptein, R., 1983, In vivo31P and 13C nuclear magnetic resonance studies of acetate metabolism in Chromatium vinosum, J. Bacteriol. 155: 634 – 642.PubMedGoogle Scholar
  257. Oeding, V., and Schlegel, H. G., 1973, –-Ketothiolase from Hydrogenomonas eutropha HI2 and its significance in the regulation of poly-–-hydroxybutyrate metabolism, Biochem. J. 134:239–249.Google Scholar
  258. O–Hora, A., and Fottrel, P. F., 1968, Isoenzymes of –-hydroxybutyrate dehydrogenase in Rhizobium spp., Biochem. J. 110:16P–17P.Google Scholar
  259. Okada, G. V., and Hehre, E. J., 1974, New studies on amylosucrase, a bacterial α-D-glucosylase that directly converts sucrose to a glycogen-like α-glucan, J. Biol. Chem. 249: 126 – 135.PubMedGoogle Scholar
  260. Okamura, K., and Marchessault, R. H., 1967, X-ray structure of poly-β-hydroxybutyrate, in: Conformation of Biopolymers, Vol. 2 ( G. M. Ramachandran, ed.), pp. 709 – 720, Academic, New York.Google Scholar
  261. Okita, T. W., Rodriguez, R. L., and Preiss, J., 1981, Biosynthesis of bacterial glycogen. Cloning of the glycogen biosynthetic structural genes of Escherichia coli, J. Biol. Chem. 256: 6944 – 6952.PubMedGoogle Scholar
  262. Okita, T. W., Rodriguez, R., and Preiss, J., 1982, Isolation of Escherichia colistructural genes coding for the glycogen biosynthetic enzymes, Methods Enzymol. 83: 549 – 553.PubMedGoogle Scholar
  263. Okorokov, V. A., Lichko, L. P., and Kulaev, I. S., 1980, Vacuoles: Main compartments of potassium, magnesium, and phosphate ions, Saccharomyces carlsbergenesis cells, J. Bacteriol. 144: 661 – 665.PubMedGoogle Scholar
  264. Ostrovsky, D. N., Sepetov, N. F., Reshetmok, V. I., and Sibeldina, L. A., 1980, Study of the localization of polyphosphates in cells of microorganism by high-resolution phosphorus-31 NMR at 145.78 MHz, Biokhim. 45:517–525 [in Russian].Google Scholar
  265. Palmer, T. N., Wober, G., and Whelan, W. J., 1973, The pathway of exogenous and endogenous carbohydrate utilization in Escherichia coli: A dual function for the enzymes of the maltose operon, Eur. J. Biochem. 39: 601 – 612.PubMedGoogle Scholar
  266. Pastuszak, I., and Szymona, M., 1980, Occurrence of a large molecular size form of polyphosphate-glucose phototransferase in extracts of mycobacterium tuberculosis H37Ra, Acta Microbiol. Pol. 29: 49 – 56.PubMedGoogle Scholar
  267. Patel, G. B., and Breuil, C., 1981, Accumulation of an iodophilic polysaccharide during growth of Acetovibrio cellulolyticuson cellobiose, Arch. Microbiol. 129: 265 – 267.Google Scholar
  268. Pfennig, N. P., and Truper, H. G., 1974, The phototrophic bacteria, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), p. 24, Williams & Wilkins, Baltimore.Google Scholar
  269. Pfister, R. M., and Lundgren, D. G., 1964, Electron microscopy of polyribosomes within Bacillus cereus, J. Bacteriol 80: 1119 – 1129.Google Scholar
  270. Pirt, S. J., 1965, The maintenance energy of bacteria in growing culture, Proc. R. Soc. B 163: 224 – 231.Google Scholar
  271. Pirt, S. J., 1982, Maintenance energy: A general model for energy-limited and energy-sufficient growth, Arch. Microbiol. 139: 300 – 302.Google Scholar
  272. Poindexter, J. S., 1964, Biological properties and classification of the Caulobactergroup, Bacteriol. Rev. 28: 231 – 295.PubMedGoogle Scholar
  273. Preiss, J., 1969, The regulation of the biosynthesis of α-1,4-glucans in bacteria and plants, in: Current Topics in Cellular Regulation, Vol. 1 ( B. L. Horecker and E. R. Stadtman, eds.), pp. 125 – 160, Academic, New York.Google Scholar
  274. Preiss, J., 1972, Studies on the function of a regulatory site using mutants, Intra-Sci. Chem. Rep. 6: 13 – 22.Google Scholar
  275. Preiss, J., 1973, Adenosine diphosphoryl glucose pyrophosphorylase, in: The Enzymes, Vol. 8, 3rd ed. ( P. D. Boyer, ed.), pp. 73 – 119, Academic, New York.Google Scholar
  276. Preiss, J., 1978, Regulation of adenosine diphosphate glucose pyrophosphorylase, Adv. Enzymol. 46: 317 – 381.PubMedGoogle Scholar
  277. Preiss, J., 1984, Bacterial glycogen synthesis and its regulation, Annu. Rev. Microbiol. 38: 419 – 458.PubMedGoogle Scholar
  278. Preiss, J., and Greenberg, E., 1981, Biosynthesis of bacterial glycogen: Activator specificity of the adenosine diphosphate glucose pyrophosphorylases from the genus Rhodospirillum, J. Bacteriol. 147: 711 – 719.PubMedGoogle Scholar
  279. Preiss, J., and Levi, C., 1980, Starch biosynthesis and degradation, in: Biochemistry of Plant Carbohydrates, Vol. 3 ( J. Preiss, ed.), pp. 371 – 423, Academic, New York.Google Scholar
  280. Preiss, J., and Levi, C., 1980, Starch biosynthesis and degradation, in: Biochemistry of Plant Carbohydrates, Vol. 3 ( J. Preiss, ed.), pp. 371 – 423, Academic, New York.Google Scholar
  281. Preiss, J., and Walsh, D. A., 1981, The comparative biochemistry of glycogen and starch, in: Biology of Carbohydrates, Vol. 1 ( V. Ginsburg, ed.), pp. 199 – 314, Wiley, New York.Google Scholar
  282. Preiss, J., Shen, L., Greenberg, E., and Gentner, N., 1966, Biosynthesis of bacterial glycogen IV. Activation and inhibition of the adenosine diphosphate glucose pyrophosphorylase of Escherichia coliB, Biochemistry 5: 1833 – 1845.PubMedGoogle Scholar
  283. Preiss, J., Govons, S., Eidels, L., Lammel, C., Greenberg, E., Edelmann, P., and Sabraw, A., 1970, Regulatory mechanisms in the biosynthesis of 1,4-glucans in bacteria and plants, in: Proceedings of the Miami Winter Symposium, Vol. 1, pp. 122 – 139, North-Holland, Amsterdam.Google Scholar
  284. Preiss, J., Sabraw, A., and Greenberg, E., 1971, An ADP-glucose pyrophosphorylase with lower affinities for substrate and effector molecules in an Escherichia coliB mutant deficient in glycogen synthesis, Biochem. Biophys. Res. Commun. 42: 180 – 186.PubMedGoogle Scholar
  285. Preiss, J., Ozbun, J. L., Hawker, J. S., Greenberg, E., and Lammel, C., 1973, ADPG synthetase and ADPG-α- glucan 4-glucosyl transferase: Enzymes involved in bacterial glycogen and plant starch synthesis, Ann. NY Acad. Sci. 210: 265 – 278.PubMedGoogle Scholar
  286. Preiss, J., Greenberg, E., and Sabraw, A., 1975, Biosynthesis of bacterial glycogen: Kinetic studies of a glucose-1-P adenylyl transferase (E. C. 2.7.7.27) from a glycogen deficient mutant of Escherichia coliB, J. Biol. Chem. 250: 7631 – 7638.PubMedGoogle Scholar
  287. Preiss, J., Crawford, K., Downey, J., Lammel, C., Greenberg, E., 1976, Kinetic properties of Serratia marescensadenosine 5´-diphosphate glucose pyrophosphorylase, J. Bacteriol. 127: 193 – 203.PubMedGoogle Scholar
  288. Preiss, J., Lammel, C., and Greenberg, E., 1976, Biosynthesis of bacterial glycogen XIV. Kinetic studies of a glucose-1-P adenylyl transferase (EC 2.7.7.27) from a glycogen-excess mutant of Escherichia coliB, Arch. Biochem. Biophys. 174: 105 – 119.PubMedGoogle Scholar
  289. Preiss, J., Greenberg, E., Parsons, T. F., and Downey, J., 1980, Regulatory properties of the ADP glucose pyrophosphorylase from Rhodopseudomonas sphaeroidesand Rhosopseudomona gelatinosa, Arch. Microbiol. 126: 21 – 31.PubMedGoogle Scholar
  290. Preiss, J., Mazelis, M., and Greenberg, E., 1982, Cloning of the aspartate-β-semaldehyde dehydrogenase structural gene from Escherichia coliK12, Curr. Microbiol. 7: 263 – 268.Google Scholar
  291. Preiss, J., Yung, S. G., and Baecker, P. A., 1983, Regulation of bacterial glycogen synthesis, Mol. Cell Biochem. 57: 61 – 80.PubMedGoogle Scholar
  292. Pulkownik, A., and Walker, G. J., 1976, Metabolism of the reserve polysaccharide of Streptococcus mitior (mitis): Is there a second α-l,4-glucan phosphorylase?, J. Bacteriol. 127: 281 – 290.PubMedGoogle Scholar
  293. Ras, N. N., Roberts, M. F., and Torriani, A., (1987), Polyphosphate accumulation and metabolism in Escherichia coli, in: Phosphate metabolism and cellular regulation in microorganisms( A. Torriani-Gorini, F. G. Rothman, S. Silver, A. Wright, and E. Yagil, eds.), pp. 213 – 219, American Society of Microbiologists, Washington, D.C.Google Scholar
  294. Reusch, R. N., and Sadoff, H. L., 1983, D(–)-Poly-β-hydroxybutyrate in membranes of genetically competent bacteria, J. Bacteriol. 156: 778 – 788.PubMedGoogle Scholar
  295. Ribbons, D. W., and Dawes, E. A., 1963, Environmental and growth conditions affecting the endogenous metabolism of bacteria, Ann. NY Acad. Sci. 102: 564 – 586.PubMedGoogle Scholar
  296. Riley, R. G., and Kolodziej, B. J., 1976, Pathway of glucose catabolism in Caulobacter crescentus, Microbios. 16: 219 – 226.PubMedGoogle Scholar
  297. Ritchie, G. A. F., and Dawes, E. A., 1969, The non-involvement of acyl-carrier protein in poly-β-hydroxy- butyric acid biosynthesis, Azotobacter beijerinckii, Biochem. J. 112: 803 – 805.PubMedGoogle Scholar
  298. Ritchie, G. A. F., Senior, P. J., and Dawes, E. A., 1971, The purification and characterization of acetoacetyl- coenzyme a reductase from Azotobacter beijerinckii, Biochem. J. 121: 309 – 316.PubMedGoogle Scholar
  299. Robson, R. L., and Morris, J. G., 1974, Mobilization of granulose in Clostridium pasteurianumpurification and properties of granulose phosphorylase, Biochem. J. 144: 513 – 517.PubMedGoogle Scholar
  300. Robson, R. L., and Morris, J. G., 1974, Mobilization of granulose in Clostridium pasteurianumpurification and properties of granulose phosphorylase, Biochem. J. 144: 513 – 517.PubMedGoogle Scholar
  301. Rouf, M. A., and Stokes, J. L., 1962, Isolation and identification of the sudanophilic granules of Sphaerotilis natans, J. Bacteriol. 83: 343 – 347.PubMedGoogle Scholar
  302. Sall, T., Mudd, S., and Davis, J. C., 1956, Factors conditioning the accumulation and disappearance of metaphosphate in cells of Corynebacterium diptheriae, Arch. Biochem. Biophys. 60: 130 – 146.PubMedGoogle Scholar
  303. Sall, T., Mudd, S., and Takagi, A., 1958, Phosphate accumulation and utilization as related to synchronized cell division of Corynebacterium diptheriae, J. Bacteriol. 76: 640 – 645.PubMedGoogle Scholar
  304. Saito, T., Fukui, T., Ikeda, F., Tanaka, Y., and Tomita, K., 1977, An NADP linked acetoacetyl CoA reductase from Zoogloea ramigera, Arch. Microbiol. 114: 211 – 217.PubMedGoogle Scholar
  305. Salhany, J. M., Yamane, T., Shulman, R. G., and Ogawa, S., 1975, High resolution 31P nuclear magnetic resonance studies of intact yeast cells, Proc. Natl. Acad. Sci. 72: 4966 – 4970.PubMedGoogle Scholar
  306. Sarma, T. A., and Kanta, S., 1979, Biochemical studies on sporulation in blue-green algae. I. glycogen accumulation, Z. Allg. Mikrobiol.19: 571 – 575.PubMedGoogle Scholar
  307. Schindler, J., 1964, Die synthese von Poly-Beta-Hydroxybuttersaure Durch Hydrogenomonas H 16. Die 24 Beta-Hydroxybutyryl-Coenzym A fuhrenden Reaktionsschritte, Arch. Microbiol. 49: 236 – 255.Google Scholar
  308. Schindler, J., and Schlegel, H. G., 1963, D(–)-β-hydroxybuttersaure dehydrogenase aus HydrogenomonasH16, Biochem. Z. 339: 154 – 161.PubMedGoogle Scholar
  309. Schlegel, H. G., 1962a, Die isolierung von poly-–-hydroxybuttersaure aus wurzelknollchen von leguminosen, Flora 152:235–240.Google Scholar
  310. Schlegel, H. G., 1962b, Die speichestoffe von Chromatium okanii, Arch. Mikrobiol. 42:110–116.Google Scholar
  311. Schlegel, H. G., and Gottschalk, G., 1962, Poly-Beta-Hydroxybuttersaure ihre verbreitung, funktion and biosynthese, Angew. Chem. 74: 342 – 347.Google Scholar
  312. Schlegel, H. G., Gottschalk, G., and Von Bartha, R., 1961, Formation and utilization of poly-β-hydroxybutyric acid by knallgas bacteria (Hydrogenomonas) Nature (Lond.) 191: 463 – 465.Google Scholar
  313. Schlegel, H. G., Lafferty, R., and Krauss, I., 1970, The isolation of mutants not accumulating poly-β-hydroxy- butyric acid, Arch. Microbiol. 71: 283 – 294.Google Scholar
  314. Schmidt, G., Hecht, L., and Thannhauser, S. J., 1946, The enzymatic formation and the accumulation of large amount of a metaphosphate in bakers yeast under certain conditions, J. Biol. Chem. 166: 775 – 776.PubMedGoogle Scholar
  315. Schuster, E., and Schlegel, H. G., 1967, Chemolithotrophes wachstum von HydrogenomonasH16 in chemotaten mit elektrolytischer knallgaserzeugung, Arch. Microbiol. 58: 380 – 409.Google Scholar
  316. Schwartz, M., 1965, Aspects biochimiques et genetiques du metabolisme du maltose chez Escherichia coliK12, Compt. Rendu 260: 2613 – 2616.Google Scholar
  317. Schwartz, M., and Hoffnung, M., 1967, La maltodextrine phosphorylase d’Escherichia coli, Eur. J. Biochem. 2: 132 – 145.PubMedGoogle Scholar
  318. Schwenke, J., 1978, Polyphosphatase in yease vacuoles, Sixth International Specialized Symposium on Yeasts, Montepelier, France, PS IX 10.Google Scholar
  319. Segel, I. H., Cattaneo, J., and Sigal, N., 1963, The regulation of glycogen synthesis in Aerobacter aerogenes, in: Proceedings of the InternationalCNRS Symposium on the Mechanical Regulation of Cellular Activities of Microorganisms, Marseilles 1963, pp. 335 – 337, Centre National de la Recherche Scientifique, Paris.Google Scholar
  320. Senior, P. J., and Dawes, E. A., 1971, Poly-β-hydroxybutyrate biosynthesis and the regulation of glucose metabolism in Azotobacter beijerenckii, Biochem. J. 125: 55 – 66.PubMedGoogle Scholar
  321. Senior, P. J., and Dawes, E. A., 1973, The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerenckii, Biochem. J. 134: 225 – 238.PubMedGoogle Scholar
  322. Senior, P. J., Beech, G. A., Ritchie, G. A. F., and Dawes, E. A., 1972, The role of oxygen limitation in the formation of poly-β-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii, Biochem. J. 128: 1193 – 1201.PubMedGoogle Scholar
  323. Severin, A. I., Lusty, K. A., Kulaev, I. S., and Nesmeyanova, M. A., 1975, Microsome membrane bound polyphosphatase in Escherichia coli, Biokhimiia 41:357–362 [in Russian].Google Scholar
  324. Shabalin, Yu, A., Vagabov, V. M., Tsiomenko, A. B., Zemlyanukhina, O. A., and Kulaev, I. S., 1977, Polyphosphate kinase activity in vacuoles of yeasts, Biokhimiia 42:1642–1646 [in Russian].Google Scholar
  325. Shabalin, Yu, A., Vagabov, V. M., and Kulaev, I. S., 1978, Biosynthesis of high-molecular-weight polyphosphates from DGP-(32P)-mannose by a membrane fraction of Saccharomyces carlbergenesis yeasts, Dokl. Akad. Nauk. SSSR 239: 490 – 492.Google Scholar
  326. Shadi, A., Mansurova, S. E., Tsydendambaev, V. D., and Kulaev, I. S., 1976, The biosynthesis of polyphosphates in chromatophores of Rhodospirillum rubrum, Mikrobiologiia 45:333–336 [in Russian].Google Scholar
  327. Shaw, D. H., and Squires, M. J., 1980, Optional production and utiliztion of polysaccharide by Aeromonas hydrophilia, Arch. Microbiol. 125: 83 – 87.PubMedGoogle Scholar
  328. Shelton, J. R., Agostini, D. E., and Lando, J. B., 1971a, Synthesis and characterization of poly-–-hydroxybutyrate, J. Polymer Sci. 9:173–178.Google Scholar
  329. Shelton, J. R., Agostini, D. E., and Lando, J. B., 1971b, Synthesis and characterization of poly-–-hydroxy- butyrate. II. Synthesis of D-poly-–-hydroxybutyrate and the mechanism of ring-opening polymerization of –-butyrolactone, J. Polymer Sci. 9:2789–2799.Google Scholar
  330. Shen, L., and Preiss, J., 1964, The activation and inhibition of bacterial adenosine-diphosphoglucose pyrophosphorylase, Biochem. Biophys. Res. Commun. 17: 424 – 429.Google Scholar
  331. Shen, L. C., and Atkinson, D. E., 1970, Regulation of adenosine diphosphate glucose synthase from Escherichia coli, J. Biol. Chem. 245: 3996 – 4000.PubMedGoogle Scholar
  332. Shuster, C. W., and Doudoroff, M., 1962, A cold sensitive D(–)-β-hydroxybutryic acid dehydrogenase from Rhodospirillum rubrum, J. Biol. Chem. 237: 603 – 607.PubMedGoogle Scholar
  333. Sicko-Goad, L. M., and Jensen, T. E., 1976, Phosphate metabolism in blue-green algae. II. Changes in phosphate distribution during starvation and the “Polyphosphate Overplus” phenomenon in Plectonema boryanum, Am. J. Bot. 63: 183 – 188.Google Scholar
  334. Sicko-Goad, L. M., Crang, P. E., and Jensen, T. E., 1975, Phosphate metabolism in blue-green algae. IV. In situ analysis of polyphosphate bodies by X-ray energy dispersive analysis, Cytobiology 11: 430 – 437.Google Scholar
  335. Sicko-Goad, L. M., Jensen, T. E., and Ayala, R. P., 1978, Phosphate metabolism in blue-green bacteria. V. Factors affecting phosphate uptake in Plectomema boryanum, Can. J. Microbiol. 24: 105 – 111.PubMedGoogle Scholar
  336. Sierra, G., and Gibbons, N. E., 1962a, Production of poly-–-hydroxybutyric acid granules in Micrococcus halodenitrificans, Can. J. Microbiol. 8:249–253.Google Scholar
  337. Sierra, G., and Gibbons, N. E., 1962b, Role and oxidation pathway of poly-–-hydroxybutyric acid depolymerase of Micrococcus halodenitrificans, Can. J. Microbiol. 8:255–269.Google Scholar
  338. Sierra, G., and Gibbons, N. E., 1963, Sodium requirement of poly-β-hydroxybutyric acid depolymerase of Micrococcus halodenitrificans, Can. J. Microbiol. 9: 491 – 497.Google Scholar
  339. Sigal, N., and Puig, J., 1968, Etude génétique des mutants du système de la glycogénèse chez Escherichia coliK12, C. R. Acad. Sci. (Paris) 267: 1223 – 1226.Google Scholar
  340. Sigal, N., Cattaneo, J., and Segel, I. H., 1964, Glycogen accumulation by wild-type and uridine diphosphate glucose pyrophosphorylase-negative strains of Escherichia coli, Arch. Biochem. Biophys. 108: 440 – 451.PubMedGoogle Scholar
  341. Sigal, N., Cattaneo, J., Chambost, J. P., and Favard, A., 1965, Characterization and partial purification of a branching enzyme from Escherichia coli, Biochem. Biophys. Res. Commun. 20: 616 – 620.PubMedGoogle Scholar
  342. Sirevag, R., 1975, Photoassimilation of acetate and metabolism of carbohydrate in Chlorobium thiosulfatophilum, Arch. Microbiol. 104: 105 – 111.PubMedGoogle Scholar
  343. Sirevag, R., and Castenholz, R., 1979, Aspects of carbon metabolism in Chloroflexus, Arch. Microbiol. 120: 151 – 153.Google Scholar
  344. Sirevag, R., and Omerod, J. G., 1977, Synthesis, storage and degradation of poly glucose in chlorobium thiosulfatophilum, Arch. Microbiol. 111: 239 – 244.PubMedGoogle Scholar
  345. Slepecky, R. A., and Law, J. H., 1961, Synthesis and degradation of poly-β-hydroxybutyric acid in connection with sporulation of Bacillus megaterium, J. Bacteriol. 82: 37 – 42.PubMedGoogle Scholar
  346. Slock, J. A., and Stahly, D. P., 1974, Polysaccharide that may serve as a carbon and energy storage compound for sporulation in Bacillus cereus, J. Bacteriol. 120: 399 – 406.PubMedGoogle Scholar
  347. Smith, I. W., Wilkinson, J. F., and Duguid, J. P., 1954, Volutin production in Aerobacter aerogenesdue to nutrient imbalance, J. Bacteriol. 68: 450 – 463.PubMedGoogle Scholar
  348. Sobeck, J. M., Charba, J. F., and Forest, W. N., 1966, Endogenous metabolism of Azotobacter agilis, J. Bacteriol. 92: 687 – 695.Google Scholar
  349. Solimene, R., Guerrini, A. M., and Donini, P., 1980, Levels of acid-soluble polyphosphate in growing culture of Saccharomyces cerevisiae, J. Bacteriol. 143: 710 – 714.PubMedGoogle Scholar
  350. Spearman, T. N., Khandelwal, R. L., and Hamilton, I. R., 1973, Some regulatory properties of glycogen phosphorylase from Streptococcus salivarius, Arch. Biochem. Biophys. 154: 306 – 313.PubMedGoogle Scholar
  351. Stahl, A. J. C., 1969, Sur la biosynthèse des polyphosphates dans la levure, Bull. Soc. Chim. Biol. 51: 1211 – 1220.PubMedGoogle Scholar
  352. Stahl, A. J. C., Blakes, J., Weil, J. H., and Ebel, J. P., 1964a, Etude du transfert du phosphore des polyphosphates inorganiques dans les acides ribonucl–iques chez la levure. II. Distribution du phosphore polyphosphorique dans les diverses fractions ribonucl–iques, Bull. Soc. Chim. Biol. 46:1017–1026.Google Scholar
  353. Stahl, A. J. C., Muller-Felter, S., and Ebel, J. P., 1964b, Etude du transfert du phosphore des polyphosphates inorganiques dan les acides ribonucl–iques chez la levure. I. Mise en –vidence d–un transfert du phosphore polyphosphorique dans diff–rentes fraction phosphor–es, Bull. Soc. Chim. Biol. 46:1005–1015.Google Scholar
  354. Stalmans, W., and Hers, H. G., 1973, Glycogen synthesis from UDPG, in: The Enzymes, 3rd ed. ( P. D. Boyer, ed.), pp. 309 – 361, Academic, New York.Google Scholar
  355. Stanier, R. Y., Palleroni, N. J., and Doudoroff, M., 1966, The aerobic pseudomonads: A taxonomic study, J. Gen. Microbiol. 43: 159 – 271.PubMedGoogle Scholar
  356. Stams, F. J. M., Veenhuis, M., Weenk, G. H., and Hansen, T. A., 1983, Occurrence of polyglucose as a storage polymer in Desulfovibriospecies and Desulfobulbus propionicus, Arch. Microbiol. 136: 54 – 59.Google Scholar
  357. Stanier, R. Y., Doudoroff, M., Kunisawa, R., and Contopoulos, R., 1959, The role of organic substrates in bacterial photosynthesis, Proc. Natl. Acad. Sci. USA 45: 1246 – 1260.PubMedGoogle Scholar
  358. Steiner, K. E., and Preiss, J., 1977, Biosynthesis of bacterial glycogen: Genetic and allosteric regulation of glycogen bisoynthesis in Salmonella typhimurinLT-2, J. Bacteriol. 129: 246 – 253.PubMedGoogle Scholar
  359. Stevenson, L. H., and Socolofsky, M. D., 1966, Cyst formation and poly-β-hydroxybutyric acid accumulation in Azotobacter, J. Bacteriol. 91: 304 – 310.PubMedGoogle Scholar
  360. Stewart, W. D. P., and Codd, G. A., 1975, Polyhedral bodies: Carboxysomes of nitrogen fixing blue-green algae, Br. Phycol. J. 10: 273 – 278.Google Scholar
  361. Strasdine, G. A., 1968, Amylopectin accumulation in Clostridium botulinumtype E, Can. J. Microbiol. 14: 1059 – 1062.PubMedGoogle Scholar
  362. Strange, R. E., 1968, Bacterial “glycogen” and survival, Nature (Lond.) 220: 606 – 607.Google Scholar
  363. Strange, R. E., Dark, F. A., and Ness, A. G., 1961, The survival of stationary phase Aerobacter aerogenes stored in aqueous suspension, J. Gen. Microbiol. 25: 61 – 76.Google Scholar
  364. Stockdale, H., Ribbons, D. W., and Dawes, E. A., 1965, A survey of the distribution of poly-–-hydroxybutyrate in Azotobacter and related genera, J. Gen. Microbiol. 41:xviii.Google Scholar
  365. Stockdale, H., Ribbons, D. W., and Dawes, E. A., 1968, Occurrence of poly-β-hydroxybutyrate in the Azotobacteriacea, J. Bacteriol. 95: 1798 – 1803.PubMedGoogle Scholar
  366. Stokes, J. L., and Parson, W. L., 1968, Role of poly-β-hydroxybutyrate in survival of Sphaerotilus discophorusduring starvation, Can. J. Microbiol. 14: 785 – 789.PubMedGoogle Scholar
  367. Stokes, J. L., and Powers, M. T., 1967, Stimulation of poly-β-hydroxybutyrate oxidation in Sphaerotilus discophorusby maganese and magnesium, Arch. Microbiol. 59: 295 – 301.Google Scholar
  368. Strasdine, G. A., 1972, The role of intracellular glucan in endogenous fermentation and spore maturation in Clostridium botulinumtype E, Can. J. Microbiol. 18: 211 – 217.PubMedGoogle Scholar
  369. Strohl, W. R., Cannon, G. C., Shively, J. M., Gude, H., Hook, L. A., Lane, C. M., and Larkin, J. M., 1981, Heterotrophic carbon metabolism by Beggiatoa alba, J. Bacteriol. 148: 572 – 583.PubMedGoogle Scholar
  370. Szymona, M., 1962, Purification and properties of the new hexokinase utilizing inorganic polyphosphate, Acta Biochim. Pol. 9: 165 – 181.Google Scholar
  371. Szymona, M., and Ostrowski, W., 1964, Inorganic polyphosphate glucokinase of Mycobacterium phlei, Biochim. Biophys. Acta 85: 283 – 295.PubMedGoogle Scholar
  372. Szymona, M., and Szumilo, T., 1966, Adenosine triphosphate and inorganic polyphosphate fructokinases of Mycobacterium phlei, Acta Biochim. Pol. 13: 129 – 143.PubMedGoogle Scholar
  373. Szymona, O., and Szymona, M., 1979, Polyphosphate and ATP-glucose phosphotransferase activities of Norcardia minima, Acta Microbiol. Pol. 28: 153 – 160.PubMedGoogle Scholar
  374. Szymona, M., Szymona, O., and Kulesza, S., 1962, On the occurrence of inorganic polyphosphate hexokinase in some microorganisms, Acta Microbiol. Pol. 11: 287 – 300.PubMedGoogle Scholar
  375. Szymona, M., Uryson, S. O., and Kulaev, I. S., 1967, Detection of polyphosphate glucokinase in various microorganisms, Biokhimiia 32: 495 – 503.Google Scholar
  376. Szymona, O., Kowalska, H., and Szymona, M., 1969, Search for inducible sugar kinases in Mycobacterium phlei, Ann. Univ. Mariae Curie Sklodowska [Med.] 24: 1 – 12.Google Scholar
  377. Szymona, M., Kowalska, H., and Pastuszak, I., 1977, Polyphosphate-glucose phosphotransferase. Purification of Mycobacterium tuberculosisH37Ra enzyme to apparent homogeneity, Acta Biochim. Pol. 24: 133 – 142.PubMedGoogle Scholar
  378. Taguchi, M., Izui, K., and Katsuki, H., 1980, Augmentation of glycogen synthesis under stringent control in Escherichia coli, J. Biochem. Jpn. 88: 379 – 387.Google Scholar
  379. Tanaka, Y., Saito, T., Tetsuya, F., Tanio, T., and Tomita, K., 1981, Purification and properties of D(–)3- hydroxybutyrate-dimer/hydrolase from Zoogloea ramigeraI-16-M, Eur. J. Biochem. 118: 177 – 182.PubMedGoogle Scholar
  380. Tanio, T., Fukui, T., Shirakura, Y., Saito, T., Tomita, K., Kaiko, T., and Masamune, S., 1982, An extracellular poly (3-hydroxybutyrate) depolymerase from Alcaligenes faecalis, Eur. J. Biochem. 124: 71 – 77.PubMedGoogle Scholar
  381. Tanzer, J. M., and Krichevsky, M. I., 1970, Polyphosphate formation by caries-conducive StreptococcusSL-1, Biochim. Biophys. Acta 215: 368 – 376.PubMedGoogle Scholar
  382. Tanzer, J. M., Freedman, M. L., Woodiel, F. N., Eifert, R. L., and Rinehimer, L. A., 1976, Association of Streptococcus mutansvirulence with synthesis of intracellular polysaccharide, J. Dent. Res. 55: B173.Google Scholar
  383. Tempest, D. W., and Strange, R. E., 1966, Variation in control and distribution of magnesium and its influence on survival in Aerobacter aerogenesgrown in a chemostat, J. Gen. Microbiol. 44: 273 – 279.PubMedGoogle Scholar
  384. Terry, K. R., and Hooper, A. B., 1970, Polyphosphate and orthophosphate content of Nitrosomonas europaeaas a function of growth, J. Bacteriol. 103: 198 – 206.Google Scholar
  385. Thilo, E., 1962, Condensed phosphates and arsenates, Adv. Inorg. Chem. Radiochem. 4: 1 – 77.Google Scholar
  386. Tijssen, J. P. F., and Van Steveninck, J., 1984, Detection of a yeast polyphosphate fraction localized outside the plasma membrane by the method of phosphorus-31 nuclear magnetic resonance, Biochem. Biophys. Res. Commun. 119: 447 – 451.PubMedGoogle Scholar
  387. Tijssen, J. P. F., Beekes, H. W., and Van Steveninck, J., 1981, Localization of polyphosphate at the outside of the yeast cell plasma membrane, Biochim. Biophys. Acta 649: 529 – 532.PubMedGoogle Scholar
  388. Tijssen, J. P. F., Beekes, H. W., and Van Steveninck, 1982, Localization of polyphosphates in saccharimyces fragilis as revealed by 4´6-diamidine-2-phenylindole fluroescence, Biochim Biophys. Acta 721: 394 – 398.PubMedGoogle Scholar
  389. Tijssen, J. P. F., Dubbleman, T. M. A. R., and Van Steveninck, J., 1983, Isolation and characterization of polyphosphates from the yeast cell surface, Biochim. Biophys. Acta 760: 143 – 148.PubMedGoogle Scholar
  390. Tinelli, R., 1955a, Etude de la biochimie de las sporulation chez Bacillus megaterium. I. Composition des spores obt–nues par carence des differents substrats carbons, Ann. Inst. Pasteur Paris 88:212–226.Google Scholar
  391. Tinelli, R., 1955b, Etude de la biochimie de las sporulation chez Bacillus megaterium. II. Modifications biochimiques et –changes gazeus accompagnant la sporulation provoqu–e par carence de glucose, Ann. Inst. Pasteur Paris 88:364–375.Google Scholar
  392. Tommassen, J., and Lugtenberg, B., 1980, Outer membrane protein e of Escherichia coliK-12 is co-regulated with alkaline phosphatase, J. Bacteriol. 143: 151 – 157.PubMedGoogle Scholar
  393. Trilisenko, L. V., Vagabov, V. M., and Kulaev, I. S., 1980, Isolation and some properties of polyphosphate phosphohydrolase-deficient mutant of Neurospora crassa, Mikrobiologiia 49: 69 – 74.Google Scholar
  394. Trilisenko, L.V., Vagabov, V. M., and Kulaev, I. S., 1982, Comparative study on some properties of polyphosphatephospholydrolase in Neurospora crassastrain Ad-6 (28610) aand a leaky derivative, Neurospora Newsl. 29: 19 – 20.Google Scholar
  395. Tsai, J. C., Aladegbami, S. L., and Vela, G. R., 1979, Phosphate-limited culture of Azotobacter vinelandii, J. Bacteriol. 139: 638 – 645.Google Scholar
  396. Ueda, S., and Naui, N., 1967, Production of isoamylase by Escherichia intermedia, Appl. Microbiol. 15: 492 – 496.PubMedGoogle Scholar
  397. Ugurbil, L., Rottenberg, H., Glynn, R., and Shulman, G., 1978, 31P nuclear magnetic resonance studies of bioenergetics and glycolysis in anaerobic Escherichia coli cells, Proc. Natl. Acad. Sci. USA 75:2224–2228.Google Scholar
  398. Umnov, A. M., Egorov, S. N., Mansurova, S. E., and Kulaev, I. S., 1974, Some properties of polyphosphatases from Neurospora crassa and some other biological objects, Biokhimiia 39:373–377 [in Russian].Google Scholar
  399. Urbanowski, J., Leung, P., Weissbach, H., and Preiss, J., 1983, The in vitroexpression of the gene for Escherichia coliADP glucose pyrophosphorylase is stimulated by cycic AMP and cyclic-AMP receptor protein, J. Biol. Chem. 258: 2782 – 2784.PubMedGoogle Scholar
  400. Uryson, S. O., and Kulaev, I. S., 1968, The presence of polyphosphate glucokinase in bacteria, Dokl. Akad. Nauk SSSR 183: 957–959 [in Russian].Google Scholar
  401. Vagabov, V. M., and Kulaev, I. S., 1964, Inorganic polyphosphates in corn roots, Dokl. Akad. Nauk SSSR 158: 218–220 [in Russian].Google Scholar
  402. Vagabov, V. M., and Shabalin, Yu A., 1979, Regulation of biochemical processes in micro-organisms, USSR Acad. Sci.146.Google Scholar
  403. Vaillancourt, S., Beaucherin-Newhouse, N., and Cedergren, R. J., 1978, Polyphosphate deficient mutants of Anacystis nidulans, Can. J. Microbiol. 24: 112 – 116.PubMedGoogle Scholar
  404. Van Houte, J., and Jansen, H. M., 1968, The iodophilic polysaccharide synthesized by Streptococcus salivarius, Caries Res. 2: 47 – 56.PubMedGoogle Scholar
  405. Van Houte, J., and Jansen, H. M., 1970, Role of glycogen in survival of Steptococcus mitis, J. Bacteriol. 101: 1083 – 1085.PubMedGoogle Scholar
  406. Van Houte, J., and Saxton, C. A., 1971, Cell wall thickening and intracellular polysaccharide in microorganisms of the dental plaque, Caries Res. 5: 30 – 43.PubMedGoogle Scholar
  407. Voelz, H., Voelz, U., and Ortigoza, R. O., 1966, The polyphosphate overplus phenomenon in Myxococcus xanthus and its influence on the architecture of the cell, Arch. Miciobiol. 53: 371 – 388.Google Scholar
  408. Vollbrecht, D., Schlegel, H. G., Stoschek, G., and Janczikowski, A., 1979, Excretion of metabolites by hydrogen bacteria. IV. Respiration rate-dependent formation of primary metabolites and of poly-3- hydroxybutanoate, Eur. J. Appl. Microbiol. Biotechnol. 7: 267 – 276.Google Scholar
  409. Walker, G. J., 1966, Metabolism of the reserve polysaccharide of Streptococcus mitis, Biochem. J. 101: 861 – 872.PubMedGoogle Scholar
  410. Walker, G. J., 1968, Metabolism of the reserve polysaccharide of Streptococcus mitis. Some properties of a pullunanase, Biochem. J. 108: 33 – 40.PubMedGoogle Scholar
  411. Walker, G. J., and Builder, J. E., 1971, Metabolism of the reserve polysaccharide of Streptococcus mitis: Properties of branching enzyme and its effect on the activity of glycogen synthetase, Eur. J. Biochem. 20: 14 – 21.PubMedGoogle Scholar
  412. Wang, W. S., and Lundgren, D. G., 1969, Poly-β-hydroxybutyrate in the chemolithotrophic bacterium Ferrobacillus ferrooxidans, J. Bacteriol. 97: 947 – 950.PubMedGoogle Scholar
  413. Ward, A. C., and Dawes, E. A., 1973, A disk assay for poly-β-hydroxybutyrate, Anal. Biochem. 52: 607 – 613.PubMedGoogle Scholar
  414. Ward, A. C., Rowley, B. I., and Dawes, E. A., 1977, Effect of oxygen and nitrogen limitation on poly-β- hydroxybutyrate biosynthesis in ammonium-grown Azotobacter beijerinckii, J. Gen. Microbiol. 102: 61 – 68.Google Scholar
  415. Wazer, J. R., Van, 1958, Phosphorus and Its Compounds, Vol. 1, Interscience, New York.Google Scholar
  416. Weimberg, R., 1970, Effect of potassium chloride on the uptake and storage of phosphate by Saccharomyces mellis, J. Bacteriol. 103: 37 – 48.PubMedGoogle Scholar
  417. Weitzman, P. J. D., and Jones, D., 1968, Regulation of citrate synthase and microbiol. taxonomy, Nature (Lond.) 219: 270 – 272.Google Scholar
  418. Whyte, J. N.C., and Strasdine, G. A., 1972, An intracellular D-glucan from Clostridinom botulinumtype E, Carbohydr. Res. 25: 435 – 441.PubMedGoogle Scholar
  419. Wiame, J. M., 1947a, Etude d–une substance polyphosphor–e, basophile et metachromatique chez les levures, Biochim. Biophys. Acta 1:234–255.Google Scholar
  420. Wiame, J. M., 1947b, The metachromatic reaction of hexometaphosphate, J. Am. Chem. Soc. 69: 3146 – 3147.Google Scholar
  421. Wiame, J. M., 1948, The occurrence and physiological behavior of two metaphosphate fractions in yeast, J. Biol. Chem. 178: 919 – 929.Google Scholar
  422. Wiame, J. M., 1958, Accumulation de l’acide phosphorique (phytine, polyphosphates), in: Handbuch der flanzenphysiologie, Vol. 9, ( W. Ruhland, E. Ashby, J. Bonner, M. Geiger-Huber, W. O. James, A. Lang, D. Miiller, and M. G. Stalfelt, eds.), pp. 136 – 148, Springer-Verlag, Berlin.Google Scholar
  423. Widra, A., 1959, Metachromatic granules of microorganisms, J. Bacteriol. 78: 664 – 670.PubMedGoogle Scholar
  424. Wijbenga, D. J., Van Gemerden, H., 1981, The influence of acetate on the oxidation of sulfide by Rhodopseudomanas capsulata, Arch. Microbiol. 129: 115 – 118.Google Scholar
  425. Wilkinson, J.F., 1959, The problem of energy-storage compounds in bacteria, Exp. Cell Res. Suppl. 7: 111 – 130.Google Scholar
  426. Wilkinson, J. F., and Duguid, J. P., 1960, The influence of cultural conditions on bacterial cytology, Int. Rev. Cytol. 9: 1 – 76.PubMedGoogle Scholar
  427. Wilkinson, J. F., and Munro, A. S., 1967, The influence of growth limiting conditions on the synthesis of possible carbon and energy storage polymers in Bacillus megaterium, in: Microbial Physiology and Continuous Culture( E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), pp. 173 – 184, Her Majesty’s Stationery Office, London.Google Scholar
  428. Williamson, D. H., and Wilkinson, J. F., 1958, The isolation and estimation of the poly-β-hydroxybutyrate inclusions of Bacillusspecies, J. Gen. Microbiol. 19: 198 – 209.PubMedGoogle Scholar
  429. Williamson, D. H., Mellanby, J., and Krebs, H. A., 1962, Enzymic determination of D(–)-β-hydroxybutyric acid and acetoacetic acid in blood, Biochem. J. 82: 90 – 96.PubMedGoogle Scholar
  430. Willsky, G. P., and Malamy, M. H., 1976, Control of the synthesis of alkaline phosphate and the phosphate binding protein in Escherichia coli, J. Bacteriol. 127: 595 – 609.PubMedGoogle Scholar
  431. Winder, F. G., and Denneny, J. M., 1957, The metabolism of inorganic polyphosphate in mycobacteria, J. Gen. Microbiol. 17: 573 – 585.PubMedGoogle Scholar
  432. Winder, F. G., and O’Hara, C., 1962, Effect of iron deficiency and of zinc deficiency on composition of Mycobacerium smegmatis, Biochem. J. 82: 98 – 108.PubMedGoogle Scholar
  433. Wober, G., 1973, The pathway of maltodextrin metabolism in Pseudomonas stutzeri, J. Physiol. Chem. 354: 75 – 82.Google Scholar
  434. Wohner, G., and Wober, G., 1978, Pullulanase, an enzyme of starch catabolism is associated with the outer membrane of Klebsiella, Arch. Microbiol. 116: 303 – 310.Google Scholar
  435. Wong, P. P., and Evans, H. J., 1971, Poly-β-hydroxybutyrate utilization by soybean (Glycine max) merr. nodules and assessment of its role in maintenance of nitrogenase activity, Plant Physiol. 47: 750 – 755.PubMedGoogle Scholar
  436. Wood, H. G., and Clark, J. E., 1988, Biological aspects of inorganic polyphosphates, Annu. Rev. Biochem. 57: 235 – 260.PubMedGoogle Scholar
  437. Yagil, E., 1975, Derepression of polyphosphatase in Escherichia coliby starvation for inorganic phosphate, FEBS Lett. 55: 124 – 127.PubMedGoogle Scholar
  438. Yokobayaski, K., Misaki, A., and Harada, T., 1970, Purification and properties of Pseudomonas isamylase, Biochim. Biophys. Acta 212: 458 – 469.Google Scholar
  439. Yoshida, A., 1962, Polyphosphate in microorganisms, their structure and their role in nucleic acid synthesis, Acides Ribonucleiques et polyphosphates, Structure, Synthese et Fonctions(P. Ebel and M. Greenberg-Manago, eds.), pp. 575–595, Editions du Centre, National de la Recherche Scientifiques, Paris.Google Scholar
  440. Zevenhuizen, L. P. T. M., 1964, Branching enzyme of Arthrobacter globiformis, Biochim. Biophys. Acta 81: 608 – 611.PubMedGoogle Scholar
  441. Zevenhuizen, L. P. T. M., 1966, Formation and function of the glycogen-like polysaccharide of Arthrobacter, J. Microbiol. Serol. 32: 356 – 372.Google Scholar
  442. Zevenhuizen, L. P. T. M., 1981, Cellular glycogen, β-1,2-glucan, poly-β-hydroxybutrate and extracellular polysaccharides in fast-growing species of Rhizobium, Antonie Van Leeuwenhoek 47: 481 – 497.PubMedGoogle Scholar
  443. Zuzina, M. L., Kulaev, I. S., Bobyk, M. A., Efimova, T. P., and Tereshin, I. M., 1981, Interrelationship of polyphosphate metabolism and levorin biosynthesis in Streptomyces levoris, Biokhimiia 46:782–787 [in Russian].Google Scholar
  444. Zychlinsky, E., and Matin, A., 1983, Effect of starvation on cytoplasmic pH, proton motive force and viability of an acidophilic bacterium, Thiobacillus acidophilus, J. Bacteriol. 153: 371 – 374.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jack Preiss
    • 1
  1. 1.Department of BiochemistryMichigan State UniversityEast LansingUSA

Personalised recommendations