Skip to main content

Growth and Survival of Bacteria

  • Chapter
Bacteria in Nature

Part of the book series: Bacteria in Nature ((BANA,volume 3))

Abstract

The survival of a bacterium in its natural habitat depends on its ability to grow at a rate sufficient to balance death caused by starvation and other natural causes such as temperature, pH, and osmotic fluctuations, as well as predation and parasitism. In discussing survival under extreme conditions, Shilo (1979) has drawn attention to the difference between (1) stable ecosystems (exemplified by the continuous high temperatures in thermal springs, continuous high salinity as in the Dead Sea, and continuous high hydrostatic pressure typical of the ocean depths), which are inhabited by organisms with narrow adaptations; and (2) fluctuating ecosystems (typified by marshes, swamps, and shallow lakes with pronounced diurnal fluctuations of physical and chemical parameters) that harbor organisms with a much greater versatility of response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, Z. I., Alden, J. R., and Montague, M. D., 1980, The occurrence of trehalose in Micrococcusspecies, J. Gen. Microbiol. 121: 483 – 486.

    CAS  Google Scholar 

  • Allen, M. B. 1953, The thermophilic aerobe spore forming bacteria, Bacteriol. Rev. 17: 125 – 173.

    PubMed  CAS  Google Scholar 

  • Allen, M. M., and Hutchison, F., 1980, Nitrogen limitation and recovery in the Cyanobacterium Aphanocapsa6308, Arch. Microbiol. 128: 1 – 7.

    CAS  Google Scholar 

  • Alton, T. H., and Koch, A. L., 1974, Unused protein synthetic capacity of Escherichia coligrown in phosphate- limited chemostats, J. Mol. Biol. 86: 1 – 9.

    PubMed  CAS  Google Scholar 

  • Antoine, A. D., and Tepper, B. S., 1969, Characterization of glycogens from Mycobacteria, Arch. Biochem. Biophys. 134: 207 – 213.

    PubMed  CAS  Google Scholar 

  • Atkinson, D. E., 1968, The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers, Biochemistry 7: 4030 – 4034.

    PubMed  CAS  Google Scholar 

  • Atkinson, D. E., 1977, Cellular Energy Metabolism and Its Regulation, Academic, New York.

    Google Scholar 

  • Ball, W. J., and Atkinson, D. E., 1975, Adenylate energy charge in Saccharomyces cerevisiaeduring starvation, J. Bacteriol. 121: 975 – 982.

    PubMed  CAS  Google Scholar 

  • Baltscheffsky, H., and Von Stedingk, L.-V., 1966, Bacterial photophosphorylation in the absence of added nucleotide. A second intermediate stage of energy transfer in light-induced formation of ATP, Biochem. Biophys. Res. Commun. 22: 722 – 728.

    PubMed  CAS  Google Scholar 

  • Baltscheffsky, M., 1969, Energy conversion-linked changes of carotenoid absorbance in Rhodospirillum rubrumchromatophores, Arch. Biochem. Biophys. 130: 646 – 652.

    PubMed  CAS  Google Scholar 

  • Barner, H. D., and Cohen, S. S., 1956, Synchronization of division of a thymineless mutant of Escherichia coli, J. Bacteriol. 72: 115 – 123.

    PubMed  CAS  Google Scholar 

  • Belyaev, S. S., 1967, Distribution of the Caulobactergroup of bacteria in the Volga-Don reservoirs, Mikrobiologiia 36: 157 – 162.

    Google Scholar 

  • Belyaev, S. S., 1968a, Methods for the enumeration and isolation of Caulobacter, Mikrobiologiia 37:925–929.

    Google Scholar 

  • Belyaev, S. S., 1968b, Caulobacter in soils and some reservoirs of the USSR, Vestn. Mosk. Univ. 6:98–105.

    Google Scholar 

  • Bentley, C. M., and Dawes, E. A., 1974, The energy-yielding reactions of Peptococcus prevotii, their behaviour on starvation and the role and regulation of threonine dehydratase, Arch. Microbiol. 100: 363 – 387.

    PubMed  CAS  Google Scholar 

  • Beudeker, R. F., Kerver, J. W. M., and Kuenen, J. G., 1981, Occurrence, structure and function of intracellular polyglucose in the obligate chemolithotroph Thiobacillus neapolitanus, Arch. Microbiol. 129:221– 226.

    Google Scholar 

  • Binnie, B., Dawes, E. A., and Holms, W. H., 1960, Metabolism of Sarcina lutea. IV. Patterns of oxidative assimilation, Biochim. Biophys. Acta40: 237 – 251.

    PubMed  CAS  Google Scholar 

  • Bitton, G., and Marshall, K. C., 1980, Adsorption of Microorganisms to Surfaces, Wiley, New York.

    Google Scholar 

  • Black, S. H., and Gerhardt, P., 1962, Permeability of bacterial spores. IV. Water content, uptake and distribution, J. Bacteriol. 83: 960 – 967.

    PubMed  CAS  Google Scholar 

  • Blanchard, D. C., and Syzdek, L. D., 1970, Mechanism for the water-to-air transfer and concentration of bacteria, Science 170: 626 – 628.

    PubMed  CAS  Google Scholar 

  • Blaylock, B. A., and Nason, A., 1963, Electron transport systems of the chemoautotroph Ferrobacillus ferrooxidans, J. Biol. Chem. 238: 3453 – 3462.

    PubMed  CAS  Google Scholar 

  • Boonstra, J., and Konings, W. N., 1977, Generation of an electrochemical proton gradient by nitrate respiration in membrane vesicles from anaerobically grown Escherichia coli, Eur. Biochem. 78: 361 – 368.

    CAS  Google Scholar 

  • Boonstra, J., Downie, J. A., and Konings, W., 1978, Energy supply for active transport in anaerobically grown Escherichia coli, J. Bacteriol. 136: 844 – 853.

    PubMed  CAS  Google Scholar 

  • Booth, I. R., Mitchell, W. J., and Hamilton, W. A., 1979, Quantitative analysis of proton-linked transport systems. The lactose permease of Escherichia coli, Biochem. J. 182: 687 – 696.

    PubMed  CAS  Google Scholar 

  • Borowitzka, L. J., Demmerle, S., Mackay, M. A., and Norton, R. S. 1980, Carbon-13 nuclear magnetic resonance study of osmoregulation in a blue-green alga, Science 210: 650 – 651.

    PubMed  CAS  Google Scholar 

  • Boylen, C. W., 1973, Survival of Arthrobacter crystallopoietesduring prolonged periods of extreme desiccation, J. Bacteriol. 113: 33 – 57.

    CAS  Google Scholar 

  • Boylen, C. W., and Ensign, J. C., 1970a, Long-term starvation survival of rod and spherical cells of Arthrobacter crystallopoietes, J. Bacteriol. 103:569–577.

    Google Scholar 

  • Boylen, C. W., and Ensign, J. C., 1970b, Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of Arthrobacter crystallopoietes, J. Bacteriol. 103:578–587.

    Google Scholar 

  • Boylen, C. W., and Mulks, M. H., 1978, The survival of coryneform bacteria during periods of prolonged nutrient starvation, J. Gen. Microbiol. 105: 323 – 334.

    CAS  Google Scholar 

  • Brana, A. F., Manzanal, M. B., and Hardisson, C., 1980, Occurrence of polysaccharide granules in sporulating hyphae of Streptomyces viridochromogenes, J. Bacteriol. 144: 1139 – 1142.

    PubMed  CAS  Google Scholar 

  • Brandl, H., Gross, R. A., Lenz, R. W., and Fuller, R. C., 1988, Pseudomonas oleovoransas a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters, Appl. Environ. Microbiol. 54: 1977 – 1982.

    CAS  Google Scholar 

  • Braunegg, G., and Korneti, L., 1984, Pseudomonas 2F: Kinetics of growth and accumulation of poly- D (–)-3- hydroxybutyric acid (Poly-HB), Biotechnol. Lett. 6: 825 – 829.

    CAS  Google Scholar 

  • Breuil, C. and Patel, G. B., 1980a, Composition of Methanospirillum hungatii GP1 during growth on different media, Can. J. Microbiol. 26:577–582.

    Google Scholar 

  • Breuil, C., and Patel, G. B., 1980b, Viability and depletion of cell constituents of Methanospirillum hungatii GP1 during starvation, Can. J. Microbiol. 26:887–891.

    Google Scholar 

  • Breznak, J. A., Potrikus, C. J., Pfennig, N., and Ensign, J. C., 1978, Viability and endogenous substrates used during starvation. Survival of Rhodospirillum rubrum, J. Bacteriol. 134: 381 – 388.

    PubMed  CAS  Google Scholar 

  • Brock, T. D., 1971, Microbial growth rates in nature, Bacteriol. Rev. 35: 39 – 58.

    PubMed  CAS  Google Scholar 

  • Brock, T. D., 1978, Thermophilic Micro-organisms and Life at High Temperatures, Springer-Verlag, New York.

    Google Scholar 

  • Brookes, P. C., Tate, K. R., and Jenkinson, D. S., 1983, The adenylate energy charge of the soil microbial biomass, Soil Biol. Biochem. 15: 9 – 16.

    CAS  Google Scholar 

  • Brown, A. D., 1976, Microbial water stress, Bacteriol. Rev. 40: 803 – 846.

    PubMed  CAS  Google Scholar 

  • Brown, A. D., 1979, Physiological problems of water stress, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 65 – 81, Verlag Chemie, Berlin.

    Google Scholar 

  • Brown, C. M., and Stanley, S. O., 1972, Environment-mediated changes in the cellular content of the “pool” constituents and their associated changes in cell physiology, J. Appl. Chem. Biotechnol. 22: 363 – 389.

    CAS  Google Scholar 

  • Brown, D. E., 1970, Aeration in the submerged culture of micro-organisms, in: Methods in Microbiology, Vol. 2 ( J. R. Norris and D. W. Ribbons, eds.), pp. 125 – 174, Academic, New York.

    Google Scholar 

  • Brown, R. G., Lindberg, B., and Laishley, E. J., 1975a, Characterization of two reserve glucans from Clostridium pasteurianum, Can. J. Microbiol. 21:1136–1138.

    Google Scholar 

  • Brown, R. G., Lindberg, B., and Cheng, K.-J., 1975b, Characterization of a reserve glucan from Megasphaera elsdenii, Can. J. Microbiol. 21:1657–1659.

    Google Scholar 

  • Bulen, W. A., Le Comte, J. R., and Bales, H. E., 1963, Short-term N215 incorporation by Azotobacter, J. Bacteriol. 85: 666 – 670.

    PubMed  CAS  Google Scholar 

  • Bull, A. T., and Brown, C. M., 1979, Continuous culture applications to microbial biochemistry, in: International Review of Biochemistry Microbial Biochemistry, Vol. 21 ( J. R. Quayle, ed.), pp. 177 – 226, University Park Press, Baltimore.

    Google Scholar 

  • Burleigh, I. G., and Dawes, E. A., 1967, Studies on the endogenous metabolism and senescence of starved Sarcina lutea, Biochem. J. 102: 236 – 250.

    PubMed  CAS  Google Scholar 

  • Burns, R. G., 1983, Extracellular enzyme-substrate interactions in soil, in: Microbes in Their Natural Environment( J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 249 – 298, Cambridge University Press, London.

    Google Scholar 

  • Cagen, L. M., and Friedmann, H. C., 1972, Enzymatic phosphorylation of serine, J. Biol. Chem. 247: 3382 – 3392.

    PubMed  CAS  Google Scholar 

  • Calcott, P. H., 1981, Continuous Culture of Cells, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Campbell, A., 1957, Sychronization of cell division, Bacteriol. Rev. 21: 263 – 272.

    PubMed  CAS  Google Scholar 

  • Canale-Parola, E., 1970, Biology of the sugar-fermenting Sarcinae, Bacteriol. Rev. 34: 82 – 97.

    PubMed  CAS  Google Scholar 

  • Carter, I. S., and Dawes, E. A., 1979, Effect of oxygen concentration and growth rate on glucose metabolism, poly-β-hydroxybutyrate synthesis and respiration of Azotobacter beijerinckii, J. Gen. Microbiol 110:393– 400.

    Google Scholar 

  • Cashel, M., 1975, Regulation of bacterial ppGpp and pppGpp, Annu. Rev. Microbiol. 29: 301 – 318.

    PubMed  CAS  Google Scholar 

  • Chapman, A. G., Fall, L., and Atkinson, D. E., 1971, Adenylate energy charge in Escherichia coliduring growth and starvation, J. Bacteriol. 108: 1072 – 1086.

    PubMed  CAS  Google Scholar 

  • Chapman, S. J., and Gray, T. R. G., 1981, Endogenous metabolism and macromolecular composition of Arthrobacter globiformis, Soil Biol. Biochem. 13: 11 – 18.

    CAS  Google Scholar 

  • Cheng, K.-J., Hironaka, R., Roberts, D. W. A., and Costerton, J. W., 1973, Cytoplasmic glycogen inclusions in cells of anaerobic gram-negative rumen bacteria, Can. J. Microbiol. 19: 1501 – 1506.

    PubMed  CAS  Google Scholar 

  • Cheng, K.-J., Brown, R. G., and Costerton, J. W., 1977, Characterization of a cytoplasmic reserve glucan from Ruminococcus albus, Appl. Environ. Microbiol. 33: 718 – 724.

    PubMed  CAS  Google Scholar 

  • Christian, J. H. B., and Scott, W. J., 1953, Water relations of salmonellae at 30°C, Aust. J. Biol. Sci. 6: 565 – 573.

    PubMed  CAS  Google Scholar 

  • Clark, B., and Holms, W. H., 1976, Control of sequential utilization of glucose and fructose by Escherichia coli, J. Gen. Microbiol. 95: 191 – 201.

    CAS  Google Scholar 

  • Clarke, P. H., and Ornston, L. N., 1975, Metabolic pathways and regulation, in: Genetics and Biochemistry of Pseudomonas( P. H. Clarke and M. H. Richmond, eds.), pp. 191 – 340, Wiley, London.

    Google Scholar 

  • Clarke, P. H., Houldsworth, M. A., and Lilly, M. D., 1968, Catabolite repression and the induction of amidase synthesis by Pseudomonas aeruginosa8602 in continuous culture, J. Gen. Microbiol. 51: 225 – 234.

    PubMed  CAS  Google Scholar 

  • Clayson, D. H. F., and Blood, R. M., 1957, Food perishability: The determination of the vulnerability of food surfaces to bacterial infection, J. Sci. Food Agric.8: 404 – 414.

    CAS  Google Scholar 

  • Cobley, J. G., 1984, The maintenance of pH gradients in acidophilic and alkalophilic bacteria: Gibbs-Donnan equilibrium calculations, in: Microbial Chemoautotrophy( W. R. Strohl and O. H. Tuovinen, eds.), pp. 121 – 132, Ohio State University Press, Columbus.

    Google Scholar 

  • Coffman, R. L., Norris, T. E., and Koch, A. L., 1971, Chain elongation rate of messenger and polypeptides in slowly growing Escherichia coli, J. Mol. Biol. 60: 1 – 19.

    PubMed  CAS  Google Scholar 

  • Cohen, S. S., and Barner, H. D., 1954, Studies on unbalanced growth in Escherichia coli, Proc. Natl. Acad. Sci. USA 40: 885 – 893.

    PubMed  CAS  Google Scholar 

  • Cornibert, J., and Marchessault, R. H., 1972, Physical properties of poly-β-hydroxybutyrate. IV. Conformational analysis and crystalline structure, J. Mol. Biol. 71: 735 – 756.

    PubMed  CAS  Google Scholar 

  • Couperwhite, I., and McCallum, M. F., 1974, The influence of EDTA on the composition of alginate synthesized by Azotobacter vinelandii, Arch. Microbiol. 97: 73 – 80.

    CAS  Google Scholar 

  • Cox, G. B., and Gibson, F., 1974, Studies on electron transport and energy-linked reactions using mutants of Escherichia coli, Biochim. Biophys. Acta 346: 1 – 25.

    PubMed  CAS  Google Scholar 

  • Cox, J. C., Nicolls, D. G., and Ingledew, W. J., 1979, Transmembranal electrical potential and transmembrane pH gradient in the acidophile Thiobacillus ferrooxidans, Biochem. J. 178: 195 – 200.

    PubMed  CAS  Google Scholar 

  • Cozzone, A. J., 1981, How do bacteria synthesize proteins during amino acid starvation?, Trends Biochem. Sci. 6: 68 – 70.

    Google Scholar 

  • Csonka, L. N., 1981, Proline over-production results in enhanced osmotolerance in Salmonella typhimurium, Mol. Gen. Genet. 182: 82 – 86.

    PubMed  CAS  Google Scholar 

  • Dagley, S., and Sykes, J., 1957, Effect of starvation upon the constitution of bacteria, Nature (Lond.) 179: 1249 – 1250.

    CAS  Google Scholar 

  • Dahlback, B., Hermansson, M., Kjelleberg, S., and Norkrans, B., 1981, The hydrophobicity of bacteria—An important factor for their initial adhesion at the air-water interface, Arch. Microbiol. 128: 267 – 270.

    PubMed  CAS  Google Scholar 

  • Dalton, H., and Postgate, J. R., 1969a, Effect of oxygen on growth of Azotobacter chroococcum in batch and continuous cultures, J. Gen. Microbiol. 54:463–473.

    Google Scholar 

  • Dalton, H., and Postgate, J.R., 1969b, Growth and physiology of Azotobacter chroococcum in continuous culture, J. Gen. Microbiol. 56:307–319.

    Google Scholar 

  • Davis, W. M., and White, D. C., 1980, Fluorometric determination of adenosine nucleotide derivatives as measures of the microfouling, detrital and sedimentary microbial biomass and physiological status, Appl. Environ. Microbiol. 40: 539 – 548.

    PubMed  CAS  Google Scholar 

  • Dawes, E. A., 1976, Endogenous metabolism and the survival of starved prokaryotes, in: The Survival of Vegetative Microbes( T. R. G. Gray and J. R. Postgate, eds.), pp. 19 – 53, Cambridge University Press, London.

    Google Scholar 

  • Dawes, E. A., 1981, Carbon Metabolism, in: Continuous Culture of Cells, Vol. II ( P. H. Calcott, ed.), pp. 1 – 38, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Dawes, E. A., 1982, Class I reactions: Supply of carbon skeletons, in: Biochemistry of Bacterial Growth( J. Mandelstam, K. McQuillen, and I. Dawes, eds.), pp. 125 – 158, Blackwell, Oxford.

    Google Scholar 

  • Dawes, E. A., 1985, Starvation, survival and energy reserves, in: Bacteria in their Natural Environments( M. Fletcher and G. D. Floodgate, eds), pp. 43 – 79, Academic, London.

    Google Scholar 

  • Dawes, E. A., and Holms, W. H., 1958, Metabolism of Sarcina lutea. III. Endogenous metabolism, Biochim. Biophys. Acta 30: 278 – 293.

    PubMed  CAS  Google Scholar 

  • Dawes, E. A., and Large, P. J., 1970, Effect of starvation on the viability and cellular constituents of Zymomonas anaerobiaand Zymomonas mobilis, J. Gen. Microbiol. 60: 31 – 42.

    PubMed  CAS  Google Scholar 

  • Dawes, E. A., and Ribbons, D. W., 1962, The endogenous metabolism of micro-organisms, Annu. Rev. Microbiol. 16: 241 – 264.

    PubMed  CAS  Google Scholar 

  • Dawes, E. A., and Ribbons, D. W., 1964, Some aspects of the endogenous metabolism of bacteria, Bacteriol. Rev. 28: 126 – 149.

    PubMed  CAS  Google Scholar 

  • Dawes, E. A, and Senior, P. J., 1973, The role and regulation of energy reserve polymers in micro-organisms, Adv. Microbial Physiol. 10: 135 – 266.

    CAS  Google Scholar 

  • Dawes, E. A., Midgley, M., and Whiting, P. H., 1976, Control of transport systems for glucose, gluconate and 2-oxogluconate, and of glucose metabolism in Pseudomonas aeruginosa, in: Continuous Culture, Vol. VI: Applications and New Fields( A. C. R. Dean, D. C. Ellwood, C. G. T. Evans, and J. Melling, eds.), pp. 195 – 207, Ellis Horwood, Chichester.

    Google Scholar 

  • Dawson, M. P., Humphrey, B. A., and Marshall, K. C., 1981, Adhesion: A tactic in the survival strategy of a marine Vibrioduring starvation, Curr. Microbiol. 6: 195 – 199.

    Google Scholar 

  • Deinema, M. H., Habets, L. H. A., Scholten, J., Turkstra, E., and Webers, H. A. A. M., 1980, The accumulation of polyphosphate in Acinetobacterspp., FEMS Lett. 9: 275 – 279.

    CAS  Google Scholar 

  • DeRosa, M., Gambacorta, A., and Bu’Lock, J. D., 1975, Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius, J. Gen. Microbiol. 86: 156 – 164.

    CAS  Google Scholar 

  • DeSmet, M., Eggink, G., Witholt, B., Kingma, J., and Wynberg, H., 1983, Characterization of intracellular inclusions formed by Pseudomonas oleovoransduring growth on octane, J. Bacteriol. 154: 870 – 878.

    CAS  Google Scholar 

  • Dietzler, D. N., Lais, C. J., and Leckie, M. P., 1974, Simultaneous increases of the adenylate energy charge and the rate of glycogen synthesis in nitrogen starved Escherichia coliW4597(K), Arch. Biochem. Biophys. 160: 14 – 25.

    PubMed  CAS  Google Scholar 

  • Dietzler, D. N., Leckie, M. P., Lais, C. J., Henry, D. A., Rothert, J. H., and Ferguson, R. M., 1979a, Periodic inventory review as a strategy for survival in Escherichia coli, J. Biol. Chem. 254:8288–8294.

    Google Scholar 

  • Dietzler, D. M., Leckie, M. P., Lewis, J. W., Porter, S. E., Taxman, T. L., and Lais, C. J., 1919b, Evidence for new factors in the coordinate regulation of energy metabolism in Escherichia coli, J. Biol. Chem. 254: 8295–8307.

    Google Scholar 

  • Dietzler, D N., Leckie, M. P., Magnani, J. L, Sughrue, M. J., Bergstein, P. E., and Sternheim, W. L., 1979 c, Contribution of cyclic adenosine 3’: 5’ -monophosphate to the regulation of bacterial glycogen synthesis in vivo, J. Biol. Chem. 265:8308–8317.

    Google Scholar 

  • Dietzler, D. N., Leckie, M. P., Sternheim, W. L., Ungar, J. M., Crimmins, D. L., and Lewis, J. W., 1979d, Regulation of glycogen synthesis and glucose utilization in Escherichia coli during maintenance of the energy charge, J. Biol. Chem. 254:8276–8287.

    Google Scholar 

  • Dijkhuizen, L., van der Werf, B., and Harder, W., 1980, Metabolic regulation in Pseudomonas oxalaticusOX1. Autotrophic and heterotrophic growth on mixed substrates, Arch. Microbiol. 124: 261 – 268.

    CAS  Google Scholar 

  • Di Persio, J. R., and Deal, S. J., 1974, Identification of intracellular polysaccharide granules in thin sections of Nocardia asteroides, J. Gen. Microbiol. 83: 349 – 358.

    Google Scholar 

  • Di Persio, J. R., Mattingly, S. J., Higgins, M. L., and Shockman, G. D., 1974, Measurement of intracellular iodophilic polysaccharide in two cariogenic strains of Streptococcus mutansby cytochemical and chemical methods, Infect. Immun. 10: 597 – 604.

    Google Scholar 

  • Dirheimer, G., and Ebel, J. P., 1965, Caractérisation d’une polyphosphate-AMP-phosphotransferase dans Corynebacterium xerosis, Compt. Rendu. 260: 3787 – 3790.

    CAS  Google Scholar 

  • Dirheimer, G., and Ebel, J. P., 1968, Purification and properties of a polyphosphate: glucose (and glucosamine) 6-phosphotransferase from Corynebacterium xerosis103 1442, Bull. Soc. Chim. Biol. 50: 1933 – 1947.

    PubMed  CAS  Google Scholar 

  • Doetsch, R. N., Howard, B. H., Mann, S. O., and Oxford, A. E., 1957, Physiological factors in the production of an iodophilic polysaccharide from pentose by a sheep rumen bacteria, J. Gen. Microbiol. 16: 156 – 168.

    CAS  Google Scholar 

  • Doi, Y., Kunioka, M., Nakamura, Y., and Soga, K., 1986, Biosynthesis of polyesters by Alcaligenes eutrophus: incorporation of 13C-labelled acetate and propionate, J. Chem. Soc. Chem. Commun. 23: 1696 – 1697.

    Google Scholar 

  • Doi, Y., Tamaki, A., Kunioka, M., and Soga, K., 1988, Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes eutrophusfrom butyric and pentanoic acids, Appl. Microbiol. Biotech. 28: 330 – 334.

    CAS  Google Scholar 

  • Doudoroff, M., and Stanier, R. Y., 1959, Role of poly-β-hydroxybutyric acid in the assimilation of organic carbon by bacteria, Nature (Lond.) 183: 1440 – 1442.

    CAS  Google Scholar 

  • Dow, C. S., and Whittenbury, R., 1980, Prokaryotic form and function, in: Contemporary Microbial Ecology( D. C. Ellwood, J. N., Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 391 – 417, Academic, New York.

    Google Scholar 

  • Dow, C. S., Whittenbury, R., and Carr, N. G., 1983, The “shut down” or “growth precursor” cell—An adaptation for survival in a potentially hostile environment, in: Microbes in their Natural Environments( J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 187 – 247, Cambridge University Press, London.

    Google Scholar 

  • Drozd, J., and Postgate, J. R., 1970, Effects of oxygen on acetylene reduction, cytochrome content and respiratory activity of Azotobacter chroococcum, J. Gen. Microbiol. 63: 63 – 73.

    PubMed  CAS  Google Scholar 

  • Duxbury, T., Gray, T. R. G., and Sharples, G. P., 1977, Structure and chemistry of walls of rods, cocci and cystites of Arthrobacter globiformis. J. Gen. Microbiol. 103: 91 – 99.

    CAS  Google Scholar 

  • Eisenberg, R. C., Butters, S. J., Quay, S. C., and Friedman, S. B., 1974, Glucose uptake and phosphorylation in Pseudomonas fluorescens, J. Bacteriol. 120: 147 – 153.

    PubMed  CAS  Google Scholar 

  • Eisenberg, R. J., 1973, Induction of unbalanced growth and death of Streptococcus sanguisby oxygen, J. Bacteriol. 116: 183 – 191.

    PubMed  CAS  Google Scholar 

  • Elbein, A. D., 1974, The metabolism of α,α-trehalose, Adv. Carbohydr. Chem. Biochem. 30: 227 – 256.

    PubMed  CAS  Google Scholar 

  • Ellar, D. J., 1978a, Membrane fluidity in micro-organisms, in: Companion to Microbiology (A. T. Bull and P. M. Meadow, eds.), pp. 265–295, Longman, London.

    Google Scholar 

  • Ellar, D. J., 1978b, Spore specific structures and their function, in: Relations between Structure and Function in the Prokaryotic Cell (R. Y. Stanier, H. J. Rogers, and B. J. Ward, eds.), pp. 295–325, Cambridge University Press, London.

    Google Scholar 

  • Ellar, D., Lundgren, D. G., Okamura, K., and Marchessault, R. H., 1968, Morphology of poly-β-hydroxybutyrate granules, J. Mol. Biol. 35: 489 – 502.

    PubMed  CAS  Google Scholar 

  • Ellwood, D. C., Melling, J., and Rutter, P. R., 1979, Adhesion of Microorganisms to Surfaces, Academic, London.

    Google Scholar 

  • Ellwood, D. C., Keevil, C. W., Marsh, P. D., Brown, C. M., and Wardell, J. N., 1982, Surface-associated growth, Philos. Trans..R. Soc. Lond. [Biol.] 297: 517 – 532.

    CAS  Google Scholar 

  • Farrell, J., and Rose, A. H., 1967, Temperature effects on microorganisms, Annu. Rev. Microbiol. 21: 101 – 120.

    PubMed  CAS  Google Scholar 

  • Findlay, R. H., and White, D. C. 1983, Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium, Appl. Environ. Microbiol. 45: 71 – 78.

    PubMed  CAS  Google Scholar 

  • Findlay, R. H., Pollard, P. C., Moriarty, D. J. W., and White, D. C., 1985, Quantitative determination of microbial activity and community nutritional status in estuarine sediments: Evidence for a disturbance artifact, Can. J. Microbiol. 31: 493 – 498.

    PubMed  CAS  Google Scholar 

  • Fletcher, M. M., 1979, The aquatic environment, in: Microbial Ecology—A Conceptual Approach( J. M. Lynch and N. J. Poole, eds.), pp. 92 – 114, Black well, London.

    Google Scholar 

  • Fletcher, M., and Marshall, K. C., 1982, Are solid surfaces of ecological significance to aquatic bacteria?, Adv. Microb. Ecol. 6: 199 – 236.

    CAS  Google Scholar 

  • Forrest, W. W., and Walker, D. J., 1963, Calorimetric measurements of energy of maintenance in Streptococcus faecalis, Biochem. Biophys. Res. Commun. 13: 217 – 222.

    Google Scholar 

  • Forrest, W. W., and Walker, D. J., 1965, Synthesis of reserve materials for endogenous metabolism in Streptococcus faecalis, J. Bacteriol. 89: 1448 – 1452.

    PubMed  CAS  Google Scholar 

  • Foulds, I. J., and Carr, N. G., 1977, A proteolytic enzyme degrading phycocyanin in the cyanobacterium Anabaena cylindrica, FEMS Lett. 2: 117 – 119.

    CAS  Google Scholar 

  • Friedman, S. M. (ed.), 1978, Biochemistry of Thermophily, Academic, New York.

    Google Scholar 

  • Fry, J. C., and Zia, T., 1982a, A method for estimating viability of aquatic bacteria by slide culture, J. Appl. Bacteriol. 53:189–198.

    Google Scholar 

  • Fry, J. C., and Zia, T., 1982b, Viability of heterotrophic bacteria in freshwater, J. Gen. Microbiol. 128:2841–2850.

    Google Scholar 

  • Fuhs, G. W., and Chen, M., 1975, Microbiological basis of phosphate removal in the activated sludge process for the treatment of waste water, Microbial Ecol. 2: 119 – 138.

    CAS  Google Scholar 

  • Fuller, R. C., and Brandl, H., 1988, Novel poly(β-hydroxyalkanoates) from photosynthetic and chemosynthetic bacteria, in: Abstracts, Biotech-88, Second Spanish Conference on Biotechnology, pp. 92–93, Barcelona.

    Google Scholar 

  • Gallant, J. A., 1979, Stringent control in E. coli, Annu. Rev. Genet. 13: 395 – 415.

    Google Scholar 

  • Garrod, D. R., and Ashworth, J. M., 1973, Development of the cellular slime mould Dictyostelium discoideum, Symp. Soc. Gen. Microbiol. 23: 407 – 435.

    CAS  Google Scholar 

  • Goldberg, A. L., 1971, A role of aminoacyl-(transfer) RNA in the regulation of protein breakdown in Escherichia coli, Proc. Natl. Acad. Sci. USA 68: 362 – 366.

    PubMed  CAS  Google Scholar 

  • Gordon, A. S., Millero, F. J., and Gerchakov, S. M., 1982, Microcalorimetric measurements of glucose metabolism by marine bacterium Vibrio alginolyticus, Appl. Environ. Microbiol. 44: 1102 – 1109.

    PubMed  CAS  Google Scholar 

  • Gottschal, J. D., 1986, Mixed substrate utilization by mixed cultures, in: Bacteria in Nature( J. S. Poindexter and E. R. Leadbetter, eds.), Vol. 2 pp. 261 – 292. Plenum, New York.

    Google Scholar 

  • Gould, G. W., 1977, Recent advances in the understanding of resistance and dormancy in bacterial spores, J. Appl. Bacteriol. 42: 297 – 309.

    PubMed  CAS  Google Scholar 

  • Gould, G. W., and Dring, G. J., 1975, Heat resistance of bacterial endospores and concept of an expanded osmoregulatory cortex, Nature (Lond.) 258: 402 – 405.

    CAS  Google Scholar 

  • Gray, T. R. G., 1976, Survival of vegetative microbes in soil, in: The Survival of Vegetative Microbes( T. R. G. Gray and J. R. Postgate, eds.), pp. 327 – 364, Cambridge University Press, London.

    Google Scholar 

  • Gray, T. R. G., and Postgate, J. R. (eds.), 1976, The Survival of Vegetative Microbes, Cambridge University Press, London.

    Google Scholar 

  • Green, J. H., and Sadoff, H. L., 1965, Comparison of soluble reduced nicotinamide dinucleotide oxidases from cells and spores of Clostridium botulinum, J. Bacteriol. 89: 1499 – 1505.

    PubMed  CAS  Google Scholar 

  • Greenwood, D. J., 1968, Measurement of microbial metabolism in soil, in: The Ecology of Soil Bacteria( T. R. G. Gray and D. Parkinson, eds.), pp. 138 – 157, Liverpool University Press, Liverpool.

    Google Scholar 

  • Griebel, R. J., Smith, Z., and Merrick, J. M., 1968, Metabolism of poly-beta-hydroxybutyrate. I. Purification, composition and properties of native poly-beta-hydroxybutyrate granules from Bacillus megaterium, Biochemistry 7: 3676 – 3681.

    PubMed  CAS  Google Scholar 

  • Groat, R. G., Schultz, J., Zychlinsky, E., Bockman, A., and Matin, A., 1986, Specific gene expression at the onset of nutrient starvation in Escherichia coli and its role in starvation survival, in: Abstracts of the Annual Meeting of the American Society of Microbiology, Washington, D.C., p. 135 (abst. H-50).

    Google Scholar 

  • Guffanti, A. A., Blumenfeld, H., and Krulwich, T. A., 1981a, ATP Synthesis by an uncoupler-resistant mutant of Bacillus megaterium, J. Biol. Chem. 256:8416–8421.

    Google Scholar 

  • Guffanti, A. A., Bornstein, R. F., and Krulwich, T. A., 1981b, Oxidative phosphorylation by membrane vesicles from Bacillus alcalophilus, Biochim. Biophys. Acta 635:619–630.

    Google Scholar 

  • Gupta, M., and Carr, N. G., 1981, Enzyme activities related to Cyanophycin metabolism in heterocysts and vegetative cells of Anabaenaspp., J. Gen. Microbiol. 125: 17 – 23.

    CAS  Google Scholar 

  • Halvorson, H. O., 1962, The function and control of intracellular protein turnover in micro-organisms, in: Amino Acid Pools( J. T. Holden, ed.), pp. 646 – 654, Elsevier, Amsterdam.

    Google Scholar 

  • Hamilton, I. R., 1968, Synthesis and degradation of intracellular polyglucose in Streptococcus salivarius, Can. J. Microbiol. 14: 65 – 77.

    PubMed  CAS  Google Scholar 

  • Hamilton, W. A., 1975, Energy coupling in microbial transport, Adv. Microb. Physiol. 12: 1 – 53.

    CAS  Google Scholar 

  • Hamilton, W. A., and Dawes, E. A., 1959, A diauxic effect with Pseudomonas aeruginosa, Biochem. J. 71: 25 P.

    Google Scholar 

  • Harder, W., and Dijkhuizen, L., 1982, Strategies of mixed substrate utilization in microorganisms, Philos. Trans. R. Soc. Lond. [Biol.] 297: 459 – 480.

    CAS  Google Scholar 

  • Harder, W., and Veldkamp, H., 1970, Competition of marine psychrophilic bacteria at low temperatures, Antonie van Leeuwenhoek 37: 51 – 63.

    Google Scholar 

  • Harder, W., Kuenen, J. G., and Matin, A., 1977, Microbial selection in continuous culture, J. Appl. Bacteriol. 43: 1 – 24.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., 1964, Enzymic and genetic control of polyphosphate accumulation in Aerobacter aerogenes, J. Gen. Microbiol. 35: 81 – 90.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., 1965, Regulatory mechanism in the metabolism of inorganic polyphosphate in Aerobacter aerogenes, Colloq. Int. CNRS (Paris) 124: 307 – 315.

    Google Scholar 

  • Harold, F. M., 1966, Inorganic polyphosphates in biology: Structure, metabolism and functions, Bacteriol. Rev. 30: 772 – 794.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., and Harold, R. L., 1965, Degradation of inorganic polyphosphates in mutants of Aerobacter aerogenes, J. Bacteriol. 89: 1262 – 1270.

    PubMed  CAS  Google Scholar 

  • Harold, R. L., and Harold, F. M., 1963, Mutants of Aerobacter aerogenesblocked in the accumulation of inorganic polyphosphate, J. Gen. Microbiol. 31: 241 – 246.

    PubMed  CAS  Google Scholar 

  • Harrison, A. P., 1960, The response of Bacterium lactis aerogeneswhen held at growth temperatures in the absence of nutrient: An analysis of survival curves, Proc. R. Soc. Lond. [Biol.] 152: 418 – 428.

    Google Scholar 

  • Harrison, A. P., Jr., and Lawrence, F. R., 1963, Phenotypic, genotypic and chemical changes in starving populations of Aerobacter aerogenes, J. Bacteriol. 85: 742 – 750.

    PubMed  CAS  Google Scholar 

  • Haug, A., and Larsen, B., 1971, Biosynthesis of alginate. II. Polymannuronic acid C-5 epimerase from Azotobacter vinelandii(Lipman), Carbohydr. Res. 17: 297 – 308.

    PubMed  CAS  Google Scholar 

  • Haywood, G. W., Anderson, A. J., Chu, L., and Dawes, E. A., 1988a, Characterization of two 3-ketothiolases possessing differing substrate specificities in the polyhydroxylakanoate synthesizing organism Alcaligenes eutrophus, FEMS Microbiol. Lett. 52:91–96.

    Google Scholar 

  • Haywood, G. W., Anderson, A. J., Chu, L., and Dawes, E. A., 1988b, The role of NADH- and NADPH- linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus, FEMS Microbiol. Lett. 52:259–64.

    Google Scholar 

  • Haywood, G. W., Anderson, A. J., and Dawes, E. A., 1989, The importance of PHB-synthase substrate specificity in poly-hydroxylakanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol. Lett. 57: 1 – 6.

    CAS  Google Scholar 

  • Heinrich, M. R. (ed.), 1976, Extreme Environments: Mechanisms of Microbial Adaptation, Academic, New York.

    Google Scholar 

  • Herbert, D., 1961, The chemical composition of micro-organisms as a function of their environment, in: Microbial Reaction to Environment( G. G. Meynell and H. Gooder, eds.), pp. 391 – 416, Cambridge University Press, London.

    Google Scholar 

  • Herbert, D., Elsworth, R., and Telling, R. C., 1956, The continuous culture of bacteria: A theoretical and experimental study, J. Gen. Microbiol. 14: 601 – 622.

    PubMed  CAS  Google Scholar 

  • Herron, J. S., King, J. D., and White, D. C., 1978, Recovery of poly-β-hydroxybutyrate from estuarine microflora, Appl. Environ. Microbiol. 35: 251 – 257.

    PubMed  CAS  Google Scholar 

  • Hespell, R. B., Miozzari, G. F., and Rittenberg, S. C., 1975, Ribonucleic acid destruction and synthesis during intraperiplasmic growth of Bdellovibrio bacteriovorus, J. Bacteriol. 123: 481 – 491.

    PubMed  CAS  Google Scholar 

  • Hill, S., 1971, Influence of oxygen concentration on colony type O Derxia-gummosagrown on nitrogen-free media, J. Gen. Microbiol. 67: 77$#x2013;83.

    CAS  Google Scholar 

  • Hill, S., and Postgate, J. R., 1969, Failure of putative nitrogen fixing bacteria to fix nitrogen, J. Gen. Microbiol. 58: 277 – 285.

    PubMed  CAS  Google Scholar 

  • Hinshelwood, C. N., 1946, Chemical Kinetics of the Bacterial Cell, Oxford University Press, London.

    Google Scholar 

  • Hippe, H., 1967, Abbau und wiederverwertung von poly-beta-hydroxybuttersaure durch HydrogenomonasHI6, Arch. Microbiol. 56: 248 – 277.

    CAS  Google Scholar 

  • Hoffman-Ostenhof, O., and Weigert, W., 1952, Uber die mogliche funktion des polymeren metaphosphats als speicher energie-reichen phosphate in der hefe, Naturwissenschaften 39: 303 – 304.

    Google Scholar 

  • Holme, T., 1957, Continuous culture studies on glycogen synthesis in Escherichia coliB, Acta Chem. Scand. 11: 763 – 775.

    CAS  Google Scholar 

  • Holme, T., and Palmstierna, H., 1956, On the glycogen in Escherichia coliB; its synthesis and breakdown and its specific labelling with 14C, Acta Chem. Scand. [B] 10: 1557 – 1562.

    CAS  Google Scholar 

  • Holmes, P. A., 1985, Applications of PHB—a microbially produced biodegradable thermoplastic, Phys. Technol. 16: 32 – 36.

    CAS  Google Scholar 

  • Holms, W. H., and Bennet, P. M., 1971, Regulation of isocitrate dehydrogenase activity in Escherichia colion adaptation to acetate, J. Gen. Microbiol. 65: 57 – 68.

    PubMed  CAS  Google Scholar 

  • Holms, W. H., Hamilton, I. D., and Robertson, A. G., 1972, The rate of turnover of the adenosine triphosphate pool of Escherichia coligrowing aerobically in simple defined media, Arch. Microbiol. 83: 95 – 109.

    CAS  Google Scholar 

  • Holt, S. C., Gauthier, J. J., and Tipper, D. J., 1975, Ultrastructural studies of sporulation in Bacillus sphaericus, J. Bacteriol. 122: 1322 – 1338.

    PubMed  CAS  Google Scholar 

  • Horan, N. J., Midgley, M., and Dawes, E. A., 1978, Anaerobic transport of serine and 2-aminoisobutyric acid by Staphylococcus epidermis, J. Gen. Microbiol. 109: 119 – 126.

    PubMed  CAS  Google Scholar 

  • Horan, N. J., Midgley, M., and Dawes, E. A., 1981, Effect of starvation on transport, membrane potential and survival of Staphylococcus epidermidisunder anaerobic conditions, J. Gen. Microbiol. 127: 223 – 230.

    PubMed  CAS  Google Scholar 

  • Hsung, J. C., and Haug, A., 1975, Extracellular pH of Thermoplasma acidophila, Biochim. Biophys. Acta 389: 477 – 482.

    PubMed  CAS  Google Scholar 

  • Humphrey, B., Kjelleberg, S., and Marshall, K. C., 1983, Responses of marine bacteria under starvation conditions at a solid-water interface, Appl. Environ. Microbiol. 45: 43 – 47.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E., 1963, Polysaccharide storage and growth efficiency in Ruminococcus albus, J. Bacteriol. 86: 848 – 854.

    PubMed  CAS  Google Scholar 

  • Hunter, K., and Rose, A. H., 1972, Influence of growth temperature on the composition and physiology of micro-organisms, J. Appl. Chem. Biotechnol. 22: 527 – 540.

    CAS  Google Scholar 

  • Imae, Y., and Strominger, J. L., 1976, Relationship between cortex content and properties of Bacillus sphaericusspores, J. Bacteriol. 126: 907 – 913.

    PubMed  CAS  Google Scholar 

  • Inniss, W. E., 1975, Interaction of temperature and psychrophilic micro-organisms, Annu. Rev. Microbiol. 29: 445 – 465.

    PubMed  CAS  Google Scholar 

  • Ivler, D., 1965, Comparative metabolism of virulent and avirulent staphylococci, Ann. NY Acad. Sci. 128: 62 – 80.

    PubMed  CAS  Google Scholar 

  • Jackson, F. A., and Dawes, E. A., 1976, Regulation of the tricarboxylic acid cycle and poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckiigrown under nitrogen or oxygen limitation, J. Gen. Microbiol. 97: 303 – 312.

    PubMed  CAS  Google Scholar 

  • Jannasch, H. W., 1965, Eine notiz iiber die anreicherung von mikroorganismen im chemostaten, Zentralbl. Bakteriol. Hyg. [A]498 – 502.

    Google Scholar 

  • Jannasch, H. W., 1967, Enrichments of aquatic bacteria in continuous culture, Arch. Microbiol. 59: 165 – 173.

    CAS  Google Scholar 

  • Jannasch, H. W., 1979, Microbial ecology of aquatic low nutrient habitats, in Strategies of Microbial Life in Extreme Environments(M. Shilo, ed.), Dahlem Konferenzen Life Sciences Research Report 13, pp. 243 – 260, Verlag Chemie, Weinheim.

    Google Scholar 

  • Jannasch, H. W., and Mateles, R. I., 1974, Experimental bacterial ecology studied in continuous culture, Adv. Microb. Physiol. 11: 165 – 212.

    Google Scholar 

  • Jenkinson, D. S., and Ladd, J. N., 1981, Microbial biomass in soil: Measurement and turnover, in: Soil Biochemistry, Vol. V ( E. A. Paul and J. N. Ladd, eds.), pp. 415 – 471, Dekker, New York.

    Google Scholar 

  • Johnson, E. J., 1979, Thermophile genetics and the genetic determinants of thermophily, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 471 – 487, Verlag Chemie, Berlin.

    Google Scholar 

  • Jones, H. C., and Schmidt, J. M., 1973, Ultrastructural study of crossbands occurring in the stalks of Caulobacter crescentus, J. Bacteriol. 116: 466 – 470.

    PubMed  CAS  Google Scholar 

  • Jones, K. L., and Rhodes-Roberts, M. E., 1981, The survival of marine bacteria under starvation conditions, J. Appl. Bacteriol. 50: 247 – 258.

    CAS  Google Scholar 

  • Kaltwasser, H., 1962, Die Rolle der Polyphosphate im Phosphatstoffwechsel eines Knallgazbacterium (Hydro- genomonasStamm 20), Arch. Microbiol. 41: 282 – 306.

    CAS  Google Scholar 

  • Karl, D. M., 1980, Cellular nucleotide measurements and applications in microbial ecology, Microbiol. Rev. 44: 739 – 796.

    PubMed  CAS  Google Scholar 

  • Karl, D. M., 1986, Determination of in situmicrobial biomass, viability, metabolism, and growth, in: Bacteria in Nature, Vol. 2 ( J. S. Poindexter and E. R. Leadbetter, eds.), pp. 85 – 176, Plenum, New York.

    Google Scholar 

  • Kashket, E. R., 1982, Stoichiometry of the H+ -ATPase of growing and resting aerobic Escherichia coli, Biochemistry 21: 5534 – 5538.

    PubMed  CAS  Google Scholar 

  • Keevil, C. W., Marsh, P. D., and Ellwood, D. C., 1984, Regulation of glucose metabolism in oral streptococci through independent pathways of glucose 6-phosphate and glucose 1-phosphate formation, J. Bacteriol. 157: 560 – 567.

    PubMed  CAS  Google Scholar 

  • Kell, D. B., Ferguson, S. J., and John, P., 1978a, Measurement by a flow dialysis technique of the steady-state proton motive force in chromatophores from Rhodosprillum rubrum: Comparison with phosphorylation potential, Biochim. Biophys. Acta 502: 111 – 126.

    CAS  Google Scholar 

  • Kell, D. B., John, P., and Ferguson, S. J., 1978b, The proton motive force in phosphorylating membrane vesicles from Paracoccus denitrificans: Magnitude, sites of generation and comparison with the phosphorylation potential, Biochem. J. 174:257–266.

    Google Scholar 

  • Kjelleberg, S., Strenström, T. A., and Odham, G., 1979, Comparative study of different hydrophobic devices for sampling lipid surface films and adherent micro-organisms, Marine Biol. 53: 21 – 25.

    Google Scholar 

  • Kjelleberg, S., Humphrey, B. A., and Marshall, K. C., 1982, Effect of interfaces on small, starved marine bacteria, Appl. Environ. Microbiol. 43: 1166 – 1172.

    PubMed  CAS  Google Scholar 

  • Knöll, H., 1965, Zur Biologie der Gärungssarcinen, Monatsber. Dtsch. Akad. Wiss. Berl. 7: 475 – 477.

    Google Scholar 

  • Knowles, C. J., 1977, Microbial metabolic regulation by adenine nucleotide pools, Symp. Soc. Gen. Microbiol. 27: 241 – 283.

    CAS  Google Scholar 

  • Koch, A. L., 1971, The adaptive responses of Escherichia colito a feast and famine existence, Adv. Microb. Physiol. 6: 147 – 217.

    PubMed  CAS  Google Scholar 

  • Koch, A. L., 1976, How bacteria face depression, recession and derepression, Perspect. Biol. Med. 20: 44 – 63.

    PubMed  CAS  Google Scholar 

  • Koch, A. L., 1979, Microbial growth in low concentrations of nutrients, in: Strategies in Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 261 – 279, Verlag Chemie, Berlin.

    Google Scholar 

  • Kominek, L. A., and Halvorson, H. O., 1965, Metabolism of poly-beta-hydroxybutyrate and acetoin in Bacillus cereus, J. Bacteriol. 90: 1251 – 1259.

    PubMed  CAS  Google Scholar 

  • König, H., Skorko, R., Zillig, W., and Reiter, W. D., 1982, Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcusand Thermococcus, Arch. Microbiol. 132: 297 – 303.

    Google Scholar 

  • Konings, W. N., 1985, Generation of metabolic energy by end-product efflux, TIBS 10: 317 – 319.

    CAS  Google Scholar 

  • Konings, W. N., and Booth, I. R., 1981, Do the stoichiometrics of ion-linked transport systems vary?, Trends Biochem. Sci. 2: 257 – 262.

    CAS  Google Scholar 

  • Konings, W. L., and Veldkamp, H., 1983, Energy transduction and solute transport mechanisms in relation to environments occupied by microorganisms, in: Microbes in their Natural Environments( J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 153 – 186, Cambridge University Press, London.

    Google Scholar 

  • Kornberg, A., Kornberg, S. R., and Simms, E. S., 1956, Metaphosphate synthesis by an enzyme from Escherichia coli, Biochim. Biophys. Acta 26: 215–227.

    Google Scholar 

  • Kornberg, H. L., and Jones-Mortimer, M. C., 1977, The phosphotransferase system as a site of cellular control, in: Microbial Energetics(B. A. Haddock and W. A. Hamilton, eds.), pp. 217–240, Symp. Soc. Gen. Microbiol, no. 27. Cambridge University Press, London.

    Google Scholar 

  • Krulwich, T. A., and Ensign, J. C., 1969, Alteration of glucose metabolism of Arthrobacter crystallopoietesby compounds which induce sphere to rod morphogenesis, J. Bacteriol. 97: 526 – 534.

    PubMed  CAS  Google Scholar 

  • Krulwich, T. A., Davidson, L. F., Filip, S. J., Jr., Zuckerman, R. S., and Guffanti, A. A., 1978, The proton motive force and beta galactosidase transport in Bacillus acidocaldarius, J. Biol. Chem. 253: 4599 – 4603.

    PubMed  CAS  Google Scholar 

  • Kuenen, J. G., and Harder, W., 1982, Microbial competition in continuous culture, in: Experimental Microbial Ecology( R. G. Burns and J. H. Slater, eds.), Blackwell Scientific, Oxford.

    Google Scholar 

  • Kuenen, J. G., Hassan, H. M., Krinsky, N. I., Morris, J. G., Pfennig, N., Schlegel, H., Shilo, M., Vogels, G. D., Weser, U., and Wolfe, R., 1979, Oxygen Toxicity Group Report, in: Strategies of Microbial Life in Extreme Environments, (M. Shilo, ed.), pp. 223–241, Dahlem Konferenzen 1979, Verlag Chemie, Weinheim, Berlin.

    Google Scholar 

  • Küenzi, M. T., and Fiechter, A., 1972, Regulation of carbohydrate composition of Saccharomyces cerevisiaeunder growth limitation, Arch. Microbiol. 84: 254 – 265.

    Google Scholar 

  • Kulaev, I. S., 1971, Inorganic polyphosphates in evolution of phosphorus metabolism, in: Molecular Evolution, Vol. 1 ( R. Buvet and C. Ponnamperuma, eds.), p. 458, North-Holland, Amsterdam.

    Google Scholar 

  • Kulaev, I. S., 1979, The Biochemistry of Inorganic Polyphosphates, Wiley, Chichester and New York, Translated by R. F. Brookes.

    Google Scholar 

  • Kulaev, I. S., 1985, Some aspects of environmental regulation of microbial phosphate metabolism, in: Environmental Regulation of Microbial Metabolism, ( I. S. Kulaev, E. A. Dawes, and D. W. Tempest, eds.), pp. 1 – 25, Academic, London.

    Google Scholar 

  • Kulaev, I. S., and Vagabov, V. M., 1983, Polyphosphate metabolism in microorganisms, Adv. Microbiol. Physiol. 24: 83 – 171.

    CAS  Google Scholar 

  • Kulaev, I. S., Szymona, O., and Bobyk, M. A., 1968, The biosynthesis of inorganic polyphosphates in Neurospora crassa, Biokhimiia 33: 419–434 [in Russian].

    Google Scholar 

  • Kulaev, I. S., Bobyk, M. A., Nikolaev, N. N., Sergeev, N. S., and Uryson, S. O., 1971, The polyphosphate- synthesizing enzymes of some fungi and bacteria, Biokhimiia 36:943–949 [in Russian].

    Google Scholar 

  • Kulaev, I. S., Mansurova, S. E., Burlakova, E. B., and Dukhovich, V. F., 1980, Why ATP instead of pyrophosphate? Interrelation between ATP and pyrophosphate production during evolution and in contemporary organisms, Biosystems 12: 177 – 180.

    PubMed  CAS  Google Scholar 

  • Kushner, D. J. (ed.), 1978, Microbial Life in Extreme Environments, Academic, London.

    Google Scholar 

  • Kuznetsov, S. I., Dubinina, G. A., and Lapteva, N. A., 1979, Biology of oligotrophic bacteria, Annu. Rev. Microbiol. 33: 377 – 387.

    PubMed  CAS  Google Scholar 

  • Langworthy, T. A., 1978, Microbial life in extreme pH values, in: Microbial Life in Extreme Environments( D. J. Kushner, ed.), pp. 279 – 315, Academic, London.

    Google Scholar 

  • Langworthy, T. A., 1979, Membrane structure of thermoacidophilic bacteria, in: Strategies of Microbial Life in Extreme Environments(M. Shilo, ed.), pp. 417–432, Dahlem Konferenzen 1979, Verlag Chemie, Weinheim, Berlin.

    Google Scholar 

  • Langworthy, T. A., Brock, T. D., Castenholz, R. W., Esser, A. F., Johnson, E. J., Oshima, T., Tsuboi, M., Zeikus, J. G., and Zuber, H., 1979, Life at High Temperatures Group Report, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 489 – 502, Verlag Chemie, Berlin.

    Google Scholar 

  • Lanyi, J. H., 1974, Salt-dependent properties of proteins, from extremely halophilic bacteria, Bacteriol. Rev. 38: 272 – 290.

    PubMed  CAS  Google Scholar 

  • Lanyi, J. K., and Silverman, M. P., 1979, Gating effects in Halobacterium halobiummembrane transport, J. Biol. Chem. 254: 4750 – 4755.

    PubMed  CAS  Google Scholar 

  • Larsen, H., 1967, Biochemical aspects of extreme halophilism, Adv. Microb. Physiol. 1: 97 – 132.

    CAS  Google Scholar 

  • Larsen, S. H., Alder, J., Gargus, J. J., and Hogg, R. W., 1974, Chemomechanical coupling without ATP: The source of energy for motility and chemotaxis in bacteria, Proc. Natl. Acad. Sci. USA 71: 1239 – 1243.

    PubMed  CAS  Google Scholar 

  • Leckie, M. P., Tieber, V. L., Porter, S. E., and Dietzler, D. N., 1980, The relA gene is not required for glycogen accumulation during NH4+ starvation of Escherichia coli, Biochem. Biophys. Res. Commun. 95: 924 – 931.

    PubMed  CAS  Google Scholar 

  • Leckie, M. P., Porter, S. E., Tieber, V. L., and Dietzler, D. N., 1981, Regulation of the basal and cyclic AMP- stimulated rates of glycogen synthesis in Escherichia coliby an intermediate of purine biosynthesis, Biochem. Biophys. Res. Commun. 99: 1433 – 1442.

    PubMed  CAS  Google Scholar 

  • Leedle, J. A. Z., Bryant, M. P., and Hespell, R. B., 1982, Diurnal variations in bacterial numbers and fluid parameters in ruminal content of animals fed low- or high-forage diets, Appl. Environ. Microbiol. 44:402– 412.

    Google Scholar 

  • Lehmann, M., and Wöber, G., 1976, Accumulation, mobilization and turnover of glycogen in the blue-green bacterium Anacystis nidulans, Arch. Microbiol. 111: 93 – 97.

    PubMed  CAS  Google Scholar 

  • Leps, W. T., and Ensign, J. C., 1979a, Adenosine triphosphate pool levels and energy charge in Arthrobacter crystallopoietes during growth and starvation, Arch. Microbiol. 122:61–67.

    Google Scholar 

  • Leps, W. T., and Ensign, J. C., 1919b, Adenylate nucleotide levels and energy charge in Arthrobacter crystallopoietes during growth and starvation, Arch. Microbiol. 122:69–76.

    Google Scholar 

  • Lewis, J. C., Snell, N. S., and Burr, H. K., 1960, Water permeability of bacterial spores and the concept of a contractile cortex, Science 132: 544 – 545.

    PubMed  CAS  Google Scholar 

  • Limsong, S., and Frazier, W. C., 1966, Adaptation of Pseudomonas fluorescensto low levels of water activity produced by different solutes, Appl. Microbiol. 14: 899 – 901.

    PubMed  CAS  Google Scholar 

  • Lin, L. P., and Sadoff, H. L., 1968, Encystment and polymer production by Azotobacter vinelandiiin the presence of (3-hydroxybutyrate, J. Bacteriol. 95: 2336 – 2343.

    PubMed  CAS  Google Scholar 

  • Lin, L. P., and Sadoff, H. L., 1969, Chemical composition of Azotobacter vinelandiicysts, J. Bacteriol. 100: 480 – 486.

    PubMed  CAS  Google Scholar 

  • Lindner, J. G. E. M., Marcelis, J. H., Vos, N. M. De, and Hoogkamp-Korstanje, J. A. A., 1979, Intracellular polysaccharide of Bacteroides fragilis, J. Gen. Microbiol. 111: 93 – 99.

    PubMed  CAS  Google Scholar 

  • Linton, J. D., and Cripps, R. E., 1978, The occurrence and identification of intracellular polyglucose storage granules in MethylococcusNCIB 11083, grown in chemostat culture on methane, Arch. Microbiol. 117: 41 – 48.

    PubMed  CAS  Google Scholar 

  • Linton, J. D., Griffiths, K., and Gregory, M., 1981, The effect of mixtures of glucose and formate on the yield and respiration of a chemostat culture of Beneckea natriegens, Arch. Microbiol. 129: 119 – 122.

    CAS  Google Scholar 

  • Lipmann, F., 1965, Projecting backward from the present stage of evolution of biosynthesis, in: The Origins of Prebiological Systems( S. W. Fox, ed.), pp. 259 – 280, Academic, New York.

    Google Scholar 

  • Liss, E., and Langen, P., 1962, Versuche zur Polyphosphat-Uber-kompensation in Hefelzeilen nach Phosphat- verarmung, Arch. Microbiol. 41: 383 – 392.

    CAS  Google Scholar 

  • Liu, C. L., Hart, N., and Peck, H. D., Jr., 1982, Inorganic pyrophosphate: energy source for sulfate-reducing bacteria of the genus Desulfotomaculum, Science 217: 363 – 364.

    PubMed  CAS  Google Scholar 

  • Ljunger, C., 1970, On the nature of the heat resistance of thermophilic bacteria, Physiol. Plant. 23: 351 – 364.

    CAS  Google Scholar 

  • Ljunger, C., 1973, Further investigations on the nature of the heat resistance of thermophilic bacteria, Physiol. Plant. 28: 415 – 418.

    CAS  Google Scholar 

  • Lloyd, D., Morgan, N. A., John, L., and Venables, S. E., 1978, Starvation of Prototheca zopfii, J. Gen. Microbiol. 105: 1 – 10.

    CAS  Google Scholar 

  • Loperfido, B., and Sadoff, H. L., 1973, Germination of Azobacter vinelandiicysts: Sequence of mac- romolecular synthesis and nitrogen fixation, J. Bacteriol. 113: 841 – 846.

    PubMed  CAS  Google Scholar 

  • Luscombe, B. M., and Gray, T. R. G., 1974, Characteristics of Arthrobactergrown in continuous culture, J. Gen. Microbiol. 82: 213 – 222.

    Google Scholar 

  • Maaløe, O., 1979, Regulation of the protein-synthesizing machinery-ribosomes, tRNA, factors and so on, in: Biological Regulation and Development, Vol. 1 ( R. F. Goldberger, ed.), pp. 487 – 542, Plenum, New York.

    Google Scholar 

  • Maaløe, O., and Kjeldgaard, N. O., 1966, Control of Macromolecular Synthesis, W. A. Benjamin, New York.

    Google Scholar 

  • MacKelvie, R. M., Campbell, J. J. R., and Gronlund, A. F., 1968, Absence of storage products in cultures of Pseudomonas aeruginosagrown with excess carbon or nitrogen, Can. J. Microbiol. 14: 627 – 631.

    PubMed  CAS  Google Scholar 

  • Macleod, C. J., Dunnill, P., and Lilly, M. D., 1975. The synthesis of β-galactosidase by constitutive and other regulatory mutants of Escherichia coliin chemostat culture, J. Gen. Microbiol. 89: 221 – 228.

    PubMed  CAS  Google Scholar 

  • Macleod, R. M., and Calcott, P. H., 1976, Cold shock and freezing damage to microbes, in: The Survival of Vegetative Microbes( T. R. G. Gray and J. R. Postgate, ed.), pp. 81 – 109, Cambridge University Press, London.

    Google Scholar 

  • Macrae, R. M., and Wilkinson, J. F., 1958a, Poly-–-hydroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium, J. Gen. Microbiol. 19:210–222.

    Google Scholar 

  • Macrae, R. M., and Wilkinson, J. F., 1958b, The influence of cultural conditions on poly-–-hydroxybutyrate synthesis in Bacillus megaterium, Proc. R. Phys. Soc. Edin. 27:73–78.

    Google Scholar 

  • Mallette, M. F., 1963, Validity of the concept of energy of maintenance, Ann. NY Acad. Sci. 102: 521 – 535.

    PubMed  CAS  Google Scholar 

  • Maloney, P. C., 1982, Coupling between H+ entry and ATP synthesis in bacteria, in: Current Topics in Membranes and Transport, Vol. 16 ( C. L. Slayman, ed.), pp. 175 – 193, Academic, New York.

    Google Scholar 

  • Maloney, P. C., 1983, Relationship between phosphorylation potential and electrochemical H+ gradient during glycolysis in Streptococcus lactis, J. Bacteriol. 153: 1461 – 1470.

    PubMed  CAS  Google Scholar 

  • Mandelstam, J., 1976, Bacterial sporulation: A problem in the biochemistry and genetics of a primitive developmental system, Proc. R. Soc. Lond. [Biol.] 193: 89 – 106.

    CAS  Google Scholar 

  • Manian, S. S., and Ward, F. B., 1983, The effect of growth rate on the viability of Bacillus stearothermophilus, FEMS Microbiol. Lett. 18: 161 – 165.

    Google Scholar 

  • Marr, A. G., and Ingraham, J. L., 1962, Effect of temperature on the composition of fatty acids in Escherichia coli, J. Bacteriol. 84: 1260 – 1267.

    PubMed  CAS  Google Scholar 

  • Marr, A. G., Nilson, E. H., and Clark, D. J., 1963, The maintenance requirement of Escherichia coli, Ann. NY Acad. Sci. 102: 536 – 548.

    CAS  Google Scholar 

  • Marshall, B. J., and Murrell, W. G., 1970, Biophysical analysis of the spore, J. Appl. Bacteriol. 33: 103 – 129.

    PubMed  CAS  Google Scholar 

  • Marshall, B. J., Ohyde, D. F., and Christian, J. H. B., 1971, Tolerance of bacteria to high concentrations of NaCl and glycerol in the growth medium, Appl. Microbiol. 21: 363 – 364.

    CAS  Google Scholar 

  • Marshall, K. C., 1976, Interface in Microbial Ecology, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Marshall, K. C., 1979, Growth at interfaces, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 281 – 290, Verlag Chemie, Berlin.

    Google Scholar 

  • Martens, R., 1983, Estimation of adenylate energy charge ratio in soils, in: Third International Symposium on Microbial Ecology, p. 62. (abstr. N8)

    Google Scholar 

  • Mateles, R. I. Chian, S. K., and Silver, R., 1967, in Microbial Physiology and Continuous Culture(E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), pp. 232–239, HMSO, London.

    Google Scholar 

  • Matin, A., 1979, Microbial regulatory mechanisms at low nutrient concentrations as studied in chemostat, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 323 – 339, Verlag Chemie, Weinheim.

    Google Scholar 

  • Matin, A., and Veldkamp, H., 1978, Physiological basis of the selective advantage of a Spirillumsp. in a carbon-limited environment, J. Gen. Microbiol. 105: 187 – 197.

    PubMed  CAS  Google Scholar 

  • Matin, A., Grootjans, A., and Hoogenhuis, H., 1976, Influence of dilution rate on enzymes of intermediary metabolism in two freshwater bacteria grown in continuous culture, J. Gen. Microbiol. 94: 323 – 332.

    PubMed  CAS  Google Scholar 

  • Matin, A., Veldhuis, C., Stegeman, V., and Veenhuis, M., 1979, Selective advantage of a Spirillumsp. in a carbon-limited environment. Accumulation of poly-P-hydroxybutyric acid and its role in starvation, J. Gen. Microbiol. 112: 349 – 355.

    PubMed  CAS  Google Scholar 

  • Mattenheimer, H., 1956a, Die Substratspezifitat –anorganischer– Poly- und Metaphosphatasen. I. Optimale Wirkungsbedent ungen fur den enzymatischen Abbau von Poly- und Metaphosphaten, Z. Physiol. Chem. 303:107–114.

    Google Scholar 

  • Mattenheimer, H., 1956b, Die Substratspezifitat –anorganischer– Poly- und Metaphosphatasen. II. Trennung der Enzyme, Z. Physiol. Chem. 303:115–124.

    Google Scholar 

  • Mattenheimer, H., 1956c, Die Substratspezifitat anorganischer Poly- und Metaphosphatasen. III. Papirchrom- atographische Untersuchungen beim enzymatischen Abbau von anorganischen Poly- und Metaphosphaten, Z. Physiol. Chem. 303:125–139.

    Google Scholar 

  • McGrew, S. B., and Mallette, M. F., 1962, Energy of maintenance in Escherichia coli, J. Bacteriol. 83: 344 – 350.

    Google Scholar 

  • McGrew, S. B., and Mallette, M. F., 1965, Maintenance of Escherichia coliand the assimilation of glucose, Nature (Lond.) 208: 1096 – 1097.

    CAS  Google Scholar 

  • McInerney, M. J., Bryant, M. P., Hespell, R. B., and Costerton, J. W., 1981, Syntrophomonas wolfeigen nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium, Appl. Environ. Microbiol. 41: 1029 – 1039.

    CAS  Google Scholar 

  • Measures, J. C., 1975, Role of amino acids in osmoregulation of non-halophilic bacteria, Nature (Lond.) 257: 398 – 400.

    CAS  Google Scholar 

  • Meganathan, R., and Ensign, J. C., 1976, Stability of enzymes in starving Arthrobacter crystallopoietes, J. Gen. Microbiol. 94: 90 – 96.

    PubMed  CAS  Google Scholar 

  • Merrick, J. M., Delafield, F. P., and Doudoroff, M., 1962, Hydrolysis of poly-β-hydroxybutyrate by intracellular and extracellular enzymes, Fed. Proc. 21: 228.

    Google Scholar 

  • Meyer, D. J., and Jones, C. W., 1973, Oxidative phosphorylation in bacteria which contain different cytochrome oxidases, Eur. J. Biochem. 36: 144 – 151.

    PubMed  CAS  Google Scholar 

  • Meyer-Reil, L. A., 1978, Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters, Appl. Environ. Microbiol. 36: 505 – 512.

    Google Scholar 

  • Michels, P. A. M., and Konings, W. N., 1978, The electrochemical proton gradient generated by light in membrane vesicles and chromatophores from Rhodopseudomonas spheroides, Eur. J. Biochim. 85: 147 – 155.

    CAS  Google Scholar 

  • Michels, P. A. M., Michels, J. P. J., Boonstra, J., and Konings, W. N., 1979, Generation of an electrochemical proton gradient in bacteria by the excretion of metabolic end products, FEMS Microbiol. Lett. 5: 357 – 364.

    CAS  Google Scholar 

  • Midgley, M., and Dawes, E. A., 1973, The regulation of transport of glucose and methyl-a-glucoside in Pseudomonas aeruginosa, Biochem. J. 132: 141 - 154.

    PubMed  CAS  Google Scholar 

  • Miller, S. L., and Parris, M., 1964, Synthesis of pyrophosphate under primitive earth conditions, Nature (Lond.) 204: 1248 – 1250.

    CAS  Google Scholar 

  • Mink, R. W., and Hespell, R. B., 1981a, Survival of Me gasphaera elsdenii during starvation, Curr. Microbiol. 5:51–56.

    Google Scholar 

  • Mink, R. W., and Hespell, R. B., 1981b, Long-term nutrient starvation of continuously cultured (glucose- limited) Selenomonas ruminantium, J. Bacteriol. 148:541–550.

    Google Scholar 

  • Mink, R. W., Patterson, J. A., and Hespell, R. B., 1982, Changes in viability, cell composition, and enzyme levels during starvation of continuously cultured (ammonia-limited) Selenomonas ruminantium, Appl. Environ. Microbiol. 44: 913 – 922.

    PubMed  CAS  Google Scholar 

  • Mitchell, P., 1966, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Glynn Research Ltd., Bodmin.

    Google Scholar 

  • Mohammad, F. A. A., Reed, R. H., and Stewart, W. D. P., 1983, The halophilic cyanobacterium Syn- echocystis DUN52 and its osmotic responses, FEMS Microbiol. Lett. 16: 287 – 290.

    Google Scholar 

  • Monod, J., 1942, Recherches sur la croissance des cultures bactériennes, Hermann, Paris.

    Google Scholar 

  • Monod, J., 1950, La technique de culture continué: Théorie et applications, Ann. Inst. Pasteur. 79: 390 – 410.

    CAS  Google Scholar 

  • Montague, M. D., and Dawes, E. A., 1974, The survival of Peptococcus prévotiiin relation to the adenylate energy charge, J. Gen. Microbiol. 80: 291 – 299.

    PubMed  CAS  Google Scholar 

  • Moore, R. L., 1981, The biology of Hymphomicrobiumand other prosthecate, budding bacteria, Annu. Rev. Microbiol. 35: 567 – 594.

    PubMed  CAS  Google Scholar 

  • Moriarty, D. J. W., White, D. C., and Wassenberg, T. J., 1985, A convenient method for measuring rates of phospholipid synthesis in seawater and sediments: Its relevance to the determination of bacterial productivity and the disturbance artifacts introduced by measurements, J. Microbiol. Methods 3: 321 – 330.

    CAS  Google Scholar 

  • Morita, R. Y., 1968, in: Marine Microbiology, Proceedings of the Fourth International Interdisciplinary Conference (C. H. Oppenheimer, ed.), pp. 97, New York Academy of Sciences, New York.

    Google Scholar 

  • Morita, R. Y., 1975, Psychrophilic bacteria, Bacteriol. Rev. 39: 144 – 167.

    PubMed  CAS  Google Scholar 

  • Morita, R. Y., 1982, Starvation-survival of heterotrophs in the marine environment, Adv. Microb. Ecol. 6: 171 – 198.

    Google Scholar 

  • Morris, J. G., 1975, The physiology of obligate anaerobiosis, Adv. Microb. Physiol. 12: 169 – 246.

    CAS  Google Scholar 

  • Morris, J. G., 1976, Oxygen and the obligate anaerobe, J. Appl. Bacteriol. 40: 229 – 244.

    PubMed  CAS  Google Scholar 

  • Morris, J. G., 1979, Nature of oxygen toxicity in anaerobic micro-organisms, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed), pp. 149 – 162, Dahlem Konferenzen, Berlin.

    Google Scholar 

  • Mosley, G. A., Card, G. L., and Koostra, W. L., 1976, Effect of calcium and anaerobiosis on the thermostability of Bacillus stearothermophilus, Can. J. Microbiol. 22: 468 – 474.

    PubMed  CAS  Google Scholar 

  • Muhammed, A., Rodgers, A., and Hughes, D. E., 1959, Purification and properties of a polymetaphosphatase from Corynebacterium xerosis, J. Gen. Microbiol. 20: 482 – 495.

    PubMed  CAS  Google Scholar 

  • Murrell, W. G., and Warth, A. D., 1965, Composition and heat resistance of bacterial spores, in: Spores, Vol. Ill ( L. L. Campbell and H. O. Halvorson, eds.), pp. 1 – 24, American Society for Microbiology, Ann Arbor, Michigan.

    Google Scholar 

  • Nakata, H. M., 1966, Role of acetate in sporogenesis of Bacillus cereus, J. Bacteriol. 91: 784 – 788.

    PubMed  CAS  Google Scholar 

  • Nath, K., and Koch, A. L., 1970, Protein degradation in Escherichia coli. I. Measurement of rapidly and slowly decaying components, J. Biol. Chem. 245: 2889 – 2900.

    PubMed  CAS  Google Scholar 

  • Neidhardt, F. C., Van Bogelen, R. A., and Vaughn, V., 1984, The genetics and regulation of heat-shock proteins, Annu. Rev. Genet. 18: 295 – 329.

    PubMed  CAS  Google Scholar 

  • Neijssel, O. M., and Tempest, D. W., 1975, Production of gluconic acid and 2-ketogluconic acid by Klebsiella aerogenesNCTC 418, Arch. Microbiol. 105: 183 – 185.

    PubMed  CAS  Google Scholar 

  • Neijssel, O. M., and Tempest, D. W., 1976a, Bioenergetic aspects of aerobic growth of Klebsiella aerogenes NCTC 418 in carbon-limited and carbon-sufficient chemostat culture, Arch. Microbiol. 107:215–221.

    Google Scholar 

  • Neijssel, O. M., and Tempest, D. W., 1976b, The role of energy-spilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture, Arch. Microbiol. 110:305–311.

    Google Scholar 

  • Neijssel, O. M., Tempest, D. W., Postma, P. W., Duine, J. A., and Frank, J., 1983, Glucose metabolism by K+ -limited Klebsiella aerogenes: Evidence for the involvement of a quinoprotein glucose dehydrogenase, FEMS Microbiol. Lett. 20: 35 – 39.

    CAS  Google Scholar 

  • Neilands, J. B., and Ratledge, C., 1982, Microbial iron transport compounds in: CRC Handbook of Microbiology, 2nd ed., Vol. IV (A. I. Laskin and H. A. Lechevalier, eds.), pp. 565–574, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Nelson, L. M., 1978, Effect of temperature, growth rate, and nutrient limitation on the yield and composition of three bacterial isolates from an artic soil grown in continuous culture, Can. J. Microbiol. 24: 1452 – 1459.

    PubMed  CAS  Google Scholar 

  • Newell, S. Y., Fallon, R. D., and Tabor, P. S., 1986, Direct microscopy of natural assemblages, in: Bacteria in Nature, Vol. 2 ( J. S. Poindexter and E. R. Leadbetter, eds.), pp. 1 – 48, Plenum, New York.

    Google Scholar 

  • Ng, F. M-W., and Dawes, E. A., 1973, Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosaby citrate, Biochem. J. 132: 129 – 140.

    PubMed  CAS  Google Scholar 

  • Nickels, J. S., King, J. D., and White, D. C., 1979, Poly-beta-hydroxybutyrate metabolism as a measure of unbalanced growth of the estuarine detrital microflora, Appl. Environ. Microbiol. 37: 459 – 465.

    PubMed  CAS  Google Scholar 

  • Nierlich, D. P., 1978, Regulation of bacterial growth, RNA, and protein synthesis, Annu. Rev. Microbiol. 32: 393 – 432.

    PubMed  CAS  Google Scholar 

  • Norkrans, B., 1980, Surface microlayers in aquatic environments, in: Advances in Microbial Ecology, Vol. IV ( M. Alexander, ed.), pp. 51 – 85, Plenum, New York.

    Google Scholar 

  • Norton, R. S., MacKay, M. A., and Borowitzka, L. J., 1982, The physical state of osmoregulatory solutes in unicellular algae. A natural abundance carbon-13 nuclear magnetic resonance relaxation study, Biochem. J. 202: 699 – 706.

    PubMed  CAS  Google Scholar 

  • Novick, A., and Szilard, L., 1950, Experiments with the chemostat on spontaneous mutations of bacteria, Proc. Natl. Acad. Sci. USA 36: 708 – 719.

    PubMed  CAS  Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1976, Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio, Appl. Environ. Microbiol. 32: 617 – 622.

    PubMed  CAS  Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1977, Survival of a psychrophilic marine vibrio under long-term nutrient starvation, Appl. Environ. Microbiol. 33: 635 – 641.

    PubMed  CAS  Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1978a, Starvation-induced barotolerance as a survival mechanism of a psychrophilic marine vibrio in the waters of the Antarctic convergence, Marine Biol. 49:7–10.

    Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 19786, Possible strategy for the survival of marine bacteria under starvation conditions, Marine Biol. 48:289–295.

    Google Scholar 

  • O’Brien, R. W., Neijssel, O. M., and Tempest, D. W., 1980, Glucose phosphoeflo/pyruvate phosphotransferase activity and glucose uptake rate of Klebsiella aerogenesgrowing in chemostat culture, J. Gen. Microbiol. 116: 305 – 314.

    PubMed  Google Scholar 

  • Oeding, V., and Schlegel, H. G., 1973, –-Ketothiolase from Hydrogenomonas eutropha H16 and its significance in the regulation of poly-–-hydroxybutyrate metabolism, Biochem. J. 134:239–248.

    Google Scholar 

  • Oshima, T., 1979, Molecular basis for unusual thermostabilities of cell constituents from an extreme thermophile, Thermus thermophilus, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 455 – 469, Verlag Chemie, Berlin.

    Google Scholar 

  • Otto, R., Hugenholtz, J., Konings, W. N., and Veldkamp, H., 1980a, Increase of molar growth yield of Streptococcus cremoris for lactose as a consequence of lactate consumption by Pseudomonas stuzeri in mixed cultures, FEMS Microbiol. Lett. 9:85–88.

    Google Scholar 

  • Otto, R., Sonnenberg, A. S. M., Veldkamp, H., and Konings, W. N., 1980b, Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux, Proc. Natl. Acad. Sci. USA 77:5502–5506.

    Google Scholar 

  • Otto, R., Lageveen, R. G., Veldkamp, H., and Konings, W. N, 1982, Lactate efflux-induced electrical potential in membrane vesicles of Streptococcus cremoris, J. Bacteriol. 149: 733 – 738.

    PubMed  CAS  Google Scholar 

  • Otto, R., Ten Brink, B., Veldkamp, H., and Konings, W. N., 1983, The relation between growth rate and electrochemical proton gradient of Streptococcus cremoris, FEMS Microbiol. Lett. 16: 69 – 74.

    Google Scholar 

  • Page, W. J., and Sadoff, H. L., 1975, Relationship between calcium and uronic acids in the encystment of Azotobacter vinelandii, J. Bacteriol. 122: 145 – 151.

    PubMed  CAS  Google Scholar 

  • Parker, L. T., and Socolofsky, M. D., 1966, Central body of the Azotobactercyst, J. Bacteriol. 91: 297 – 303.

    PubMed  CAS  Google Scholar 

  • Parnas, H., and Cohen, D., 1976, The optimal strategy for the metabolism of reserve materials in microorganisms, J. Theor. Biol. 56: 19 – 55.

    PubMed  CAS  Google Scholar 

  • Patel, G. B., and Breuil, C., 1981, Accumulation of an iodophilic polysaccharide during growth of Acetivibrio cellulolyticuson cellobiose, Arch. Microbiol. 129: 265–267.

    CAS  Google Scholar 

  • Peck, H. D., Jr., Liu, C. L., Varma, A. K., Ljungdahl, L. G., Szulczynski, M., Bryant, F., and Carreira, L., 1982, in: Biological Basis of New Developments in Biotechnology(A. Hollaender, A. I. Laskin, and P. Rogers, eds.), pp. 317–346, Plenum, New York.

    Google Scholar 

  • Pepin, C. A., and Wood, H. G., 1986, Polyphosphate glucokinase from Propionibacterium shermanii, J. Biol. Chem. 261: 4476 – 4480.

    PubMed  CAS  Google Scholar 

  • Pfennig, N., 1979, Formation of oxygen and microbial processes establishing and maintaining anaerobic environments, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 137 – 148, Verlag Chemie, Berlin.

    Google Scholar 

  • Pine, M. J., 1970, Steady-state measurement of the turnover of amino acids in the cellular proteins of growing Escherichia coli: Existence of two kinetically distinct reactions, J. Bacteriol. 103: 207 – 215.

    PubMed  CAS  Google Scholar 

  • Pine, M. J., 1972, Turnover of intracellular proteins, Annu. Rev. Microbiol. 26: 103 – 126.

    PubMed  CAS  Google Scholar 

  • Pirt, S. J., 1965, The maintenance energy of bacteria in growing cultures, Proc. R. Soc. Lond. [Biol.] 163: 224 – 231.

    CAS  Google Scholar 

  • Pirt, S. J., 1975, Principles of Microbe and Cell Cultivation, Blackwell, Oxford.

    Google Scholar 

  • Pirt, S. J., 1982, Maintenance energy: A general model for energy-limited and energy-sufficient growth, Arch. Microbiol. 133: 300 – 302.

    PubMed  CAS  Google Scholar 

  • Poindexter, J. S., 1979, Morphological adaptation to low nutrient concentrations, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 341 – 356, Verlag Chemie, Berlin.

    Google Scholar 

  • Poindexter, J. S., 1964, Biological properties and classification of the Caulobactergroup, Microbiol. Rev. 28: 231 – 295.

    CAS  Google Scholar 

  • Poindexter, J. S., 1981a, The caulobacters: Ubiquitous unusual bacteria, Microbiol. Rev. 45:123–179.

    Google Scholar 

  • Poindexter, J. S., 1981b, Oligotrophy: Fast and famine existence, in: Advances in Microbial Ecology, Vol. 5 (M. Alexander, ed.), pp. 63–89, Plenum, New York.

    Google Scholar 

  • Poindexter, J. S., 1983, Role of prostheca development in oligotrophic aquatic bacteria, in: Current Perspectives in Microbial Ecology( H. J. Klug and C. A. Reddy, eds.), pp. 33 – 40, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Postgate, J. R., 1967, Viability measurements and the survival of microbes under minimum stress, Adv. Microbial. Physiol. 1: 1 – 23.

    Google Scholar 

  • Postgate, J. R., 1969, Viable counts and viability, in: Methods in Microbiology, Vol. 1 ( J. R. Norris and D. W. Ribbons, eds.), pp. 611 – 628, Academic, New York.

    Google Scholar 

  • Postgate, J. R., 1976, Death in macrobes and microbes, in: The Survival of Vegetative Microbes( T. R. G. Gray and J. R. Postgate, eds.), pp. 1 – 18, Cambridge University Press, London.

    Google Scholar 

  • Postgate, J. R., and Hunter, J. R., 1962, The survival of starved bacteria, J. Gen. Microbiol. 29: 233 – 263.

    PubMed  CAS  Google Scholar 

  • Postgate, J. R., and Hunter, J. R., 1964, Accelerated death of Aerobacter aerogenesstarved in the presence of growth-limiting substrates, J. Gen. Microbiol. 34: 459 – 473.

    PubMed  CAS  Google Scholar 

  • Postgate, J. R., Crumpton, J. E., and Hunter, J. R., 1961, The measurements of bacterial viabilities by slide culture, J. Gen. Microbiol. 24: 15 – 24.

    PubMed  CAS  Google Scholar 

  • Powell, E. O., 1967, The growth rate of micro-organisms as a function of substrate concentration, in: Microbial Physiology and Continuous Culture( E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), pp. 34 – 55, HMSO, London.

    Google Scholar 

  • Preiss, J., 1978, Regulation of adenosine diphosphate glucose pyrophosphorylase, Adv. Enzymol. Relat. Areas Mol. Biol. 46: 317 – 381.

    PubMed  CAS  Google Scholar 

  • Ramsey, H. H., 1962, Endogenous respiration of Staphylococcus aureus, J. Bacteriol. 83: 507 – 514.

    PubMed  CAS  Google Scholar 

  • Reece, P., Toth, D., and Dawes, E. A., 1976, Fermentation of purines and their effect on the adenylate charge and viability of starved Peptococcus prévotii, J. Gen. Microbiol. 97: 63 – 71.

    PubMed  CAS  Google Scholar 

  • Reeve, C. A., Bockman, A. T., and Matin, A., 1984a, Role of protein degradation in the survival of carbon- starved Escherichia coli and Salmonella typhimurium, J. Bacteriol. 157:758–763.

    Google Scholar 

  • Reeve, C. A., Amy, P., and Matin, A., 1984b, Role of protein synthesis in the survival of carbon-starved Escherichia coli K-12, J. Bacteriol. 160:1041–1046.

    Google Scholar 

  • Reeves, R. E., and Guthrie, J. B., 1975, Acetate kinase (pyrophosphate). A fourth pyrophosphate-dependent kinase from Entamoeba histolytica, Biochem. Biophys. Res. Commun. 66: 1389 – 1395.

    PubMed  CAS  Google Scholar 

  • Ribbons, D. W., and Dawes, E. A., 1978, Environmental and growth conditions affecting the endogenous metabolism of bacteria, Annals New York Academy of Sciences 102: 564 – 586.

    Google Scholar 

  • Richardson, D. L., Mohammad, F. A. A., Reed, R. H., and Stewart, W. D. P., 1982, Freshwater and halophilic cyanobacteria: osmotic responses in extreme environments, in: Abstracts of the IVth International Symposium on Photosynthetic Prokaryotes, Bombannes—Bordeaux, September 1982, A36.

    Google Scholar 

  • Rickenberg, H. V., 1974, Cyclic AMP in procaryotes, Annu. Rev. Microbiol. 28: 353 – 369.

    PubMed  CAS  Google Scholar 

  • Righelato, R. C., and Van Hemert, P. A., 1969, Growth and toxin synthesis in batch and chemostat cultures of Croynebacterium diphtheriae, J. Gen. Microbiol. 58: 403 – 410.

    PubMed  CAS  Google Scholar 

  • Riley, R. G., and Kolodziej, B. J., 1976, Pathway of glucose catabolism in Caulobacter crescentus, Microbios 16: 216 – 226.

    Google Scholar 

  • Ritchie, G. A. F., and Dawes, E. A., 1969, The non-involvement of acyl-carrier protein in poly-β- hydroxybutyric acid biosynthesis in Azotobacter beijerinckii, Biochem. J. 112: 803 – 805.

    PubMed  CAS  Google Scholar 

  • Ritchie, G. A. F., Senior, P. J., and Dawes, E. A., 1971, The purification and characterization of acetoacetyl- coenzyme A reductase from Azotobacter beijerinckii, Biochem. J. 121: 309 – 316.

    PubMed  CAS  Google Scholar 

  • Robertson, J. G., and Batt, R. D., 1973, Survival of Nocardia corallinaand degradation of constituents during starvation. J. Gen. Microbiol. 78: 109 – 117.

    CAS  Google Scholar 

  • Robinson, J. B., Salonius, P. O., and Chase, F. E., 1965, A note on the differential response of Arthrobacterspp. and Pseudomonasspp. to drying soil, Can. J. Microbiol. 11: 746 – 748.

    PubMed  CAS  Google Scholar 

  • Robinson, N. A., and Wood, H. G., 1986, Polyphosphate kinase from Propionibacterium shermanii, J. Biol. Chem. 261: 4481 – 4485.

    CAS  Google Scholar 

  • Rogers, H. J., 1977, Peptidoglycans (mucopeptides), structure, form and function, in: Spore Research 1976( A. N. Barker, J. Wolf, D. J. Ellar, G. J. Dring, and G. W. Gould, eds.), Academic, London.

    Google Scholar 

  • Rose, A. H., 1976, Osmotic stress and microbial survival, in: The Survival of Vegetative Microbes( T. R. G. Gray and J. R. Postgate, eds.), pp. 155 – 182, Cambridge University Press, London.

    Google Scholar 

  • Ryan, F. J., 1959, Bacterial mutation in a stationary phase and the question of cell turnover, J. Gen. Microbiol. 21: 530 – 549.

    PubMed  CAS  Google Scholar 

  • Sadoff, H. L., 1969, Spore enzymes, in: The Bacterial Spore( G. W. Gould and A. Hurst, eds.), pp. 275 – 299, Academic, London.

    Google Scholar 

  • Sadoff, H. L., 1975, Encystment and germination in Azotobacter vinelandii, Bacteriol. Rev. 39: 516 – 539.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., and Roseman, S., 1976, Sugar transport. Inducer exclusion and regulation of the melibiose, maltose, glycerol and lactose transport systems by the phosphoenolpyruvate: Sugar phosphotransferase system, J. Biol. Chem. 251: 6606 – 6615.

    PubMed  CAS  Google Scholar 

  • Schachtele, C. F., and Leung, W. S., 1975, Effect of sugar analogues on growth, sugar utilization, and acid production by Streptococcus mutans J. Dent. Res. 54: 433 – 440.

    PubMed  CAS  Google Scholar 

  • Schlegel, H. G., and Jannasch, H. W., 1967, Enrichment cultures, Annu. Rev. Microbiol. 21: 49 – 70.

    PubMed  CAS  Google Scholar 

  • Schlegel, H. G., Gottschalk, G., and Von Bartha, R., 1961, Formation and utilization of poly-β-hydroxybutyric acid by knallgas bacteria (Hydrogenomonas), Nature (Lond.) 191: 463 – 465.

    CAS  Google Scholar 

  • Schmidt, J. M., and Samuelson, G. M., 1972, Effects of cyclic nucleotides and nucleoside triphosphates on stalk formation in Caulobacter crescentus, J. Bacteriol. 112: 593 – 601.

    PubMed  CAS  Google Scholar 

  • Schmidt, J. M., and Stanier, R. Y., 1966, The development of cellular stalks in bacteria, J. Cell. Biol. 28: 423 – 436.

    PubMed  CAS  Google Scholar 

  • Schulz, E., and Hirsch, P., 1973, Morphologically unusual bacteria in acid bog water habitants, Abst. Am. Soc. Microbiol. 73: 60.

    Google Scholar 

  • Schuster, E., and Schlegel, H. G., 1967, Chemolithotrophes Wachstum Von Hydrogenomonas H16 im Chemostaten mit elektrolytscher Knallgaserzeugung, Arch. Microbiol. 58: 380 – 409.

    CAS  Google Scholar 

  • Scott, C. C. L., and Finnerty, W. R., 1976, A comparative analysis of the ultrastructure of hydrcoarbon- oxidizing micro-organisms, J. Gen. Microbiol. 94: 342 – 350.

    PubMed  CAS  Google Scholar 

  • Scott, W. J., 1957, Water relations of food spoilage micro-organisms, Adv. Food Res. 7: 83 – 127.

    CAS  Google Scholar 

  • Senez, J. C., 1962, Some considerations on the energetics of bacterial growth, Bacteriol. Rev. 26: 95 – 107.

    PubMed  CAS  Google Scholar 

  • Senior, P. J., and Dawes, E. A., 1971, Poly-β-hydroxybutyrate biosynthesis and the regulation of glucose metabolism in Azotobacter beijerinckii, Biochem. J. 125: 55 – 66.

    PubMed  CAS  Google Scholar 

  • Senior, P. J., and Dawes, E. A., 1973, The regulation of poly-β-hydroxy butyrate metabolism in Azotobacter beijerinckii, Biochem. J. 134: 225 – 238.

    PubMed  CAS  Google Scholar 

  • Senior, P. J., Beech, G. A., Ritchie, G. A. F., and Dawes, E. A., 1972, The role of oxygen limitation in the formation of poly-β-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii, Biochem. J. 128: 1193 – 1201.

    PubMed  CAS  Google Scholar 

  • Shilo, M., (ed.), 1979, Strategies of Microbial Life in Extreme Environments, Dahlem Konferenzen, Verlag Chemie, Weinheim.

    Google Scholar 

  • Siala, A. H., and Gray, T. R. G., 1974, Growth of Bacillus subtilisand spore germination in soil observed by a fluorescent antibody technique, J. Gen. Microbiol. 81: 191 – 198.

    Google Scholar 

  • Sieburth, J. M., Brooks, R. D., Gessner, R. V., Thomas, C. D., and Tootle, J. L., 1974, Microbial colonization of marine plant surfaces as observed by scanning electron microscope, in: The Effect of the Ocean Environment on Microbial Activities( R. R. Colwell and R. Y. Morita, eds.), pp. 418 – 432, University Park Press, Baltimore.

    Google Scholar 

  • Sierra, G, and Gibbons, N. E., 1962, Production of poly-β-hydroxybutyric acid granules in Micrococcus halodenitrificans, Can. J. Microbiol. 8: 249 – 253.

    PubMed  CAS  Google Scholar 

  • Silver, R. S., and Mateles, R. I., 1969, Control of mixed substrate utilization in continuous cultures of Escherichia coli, J. Bacteriol. 97: 535 – 543.

    PubMed  CAS  Google Scholar 

  • Simon, R. D., 1973, Measurement of the cyanophycin granule peptide contained in the blue-green alga Anabaena cylindrica, J. Bacteriol. 114: 1213 – 1216.

    CAS  Google Scholar 

  • Simon, R. D., 1976, The biosynthesis of multi-L-arginyl poly (L-aspartic acid) in the filamentous cyanobacterium Anaebaena cylindrica, Biochim. Biophys. Acta 422: 407 – 418.

    PubMed  CAS  Google Scholar 

  • Simon, R. D., and Weathers, P., 1976, Determination of the structure of the novel polypeptide containing aspartic acid and arginine which is found in cyanobacteria, Biochim. Biophys. Acta 420: 165 – 176.

    PubMed  CAS  Google Scholar 

  • Simoni, R. D., and Postma, P. W., 1975, The energetics of bacterial active transport, Annu. Rev. Biochem. 44: 523 – 554.

    PubMed  CAS  Google Scholar 

  • Singleton, F. L., Attwell, R. W., Jangi, M. S., and Colwell, R. R., 1982, Influence of salinity and organic nutrient concentration on survival and growth of Vibrio choleraein aquatic microcosms, Appl. Env. Microbiol. 43: 1080 – 1085.

    CAS  Google Scholar 

  • Sivakanesan, R., and Dawes, E. A., 1980, Anaerobic glucose and serine metabolism in Staphylococcus epidermidis, J. Gen. Microbiol. 118: 143 – 157.

    PubMed  CAS  Google Scholar 

  • Sjogren, R. E., and Gibson, M. J., 1981, Bacterial survival in a dilute environment, Appl. Env. Microbiol. 41: 1331 – 1336.

    CAS  Google Scholar 

  • Slepecky, R. A., 1972, Ecology of bacterial spore formers, in: Spores, Vol. V, pp. 297 – 313, American Society for Microbiology, Ann Arbor, Michigan.

    Google Scholar 

  • Slepecky, R. A., and Law, J. H., 1961, Synthesis and degradation of poly-β-hydroxybutyric acid in connection with sporulation of Bacillus megaterium, J. Bacteriol. 82: 37 – 42.

    PubMed  CAS  Google Scholar 

  • Smit, J., 1933, The biology of the fermenting sarcinae, J. Pathol. 36: 455 – 468.

    Google Scholar 

  • Smith, D. D., and Wyss, O., 1969, The rapid loss of viability of Azotobacterin aqueous solutions, Antonie van Leeuwenhoek 35: 84 – 96.

    PubMed  CAS  Google Scholar 

  • Sobek, J. M., Charba, J. F., and Foust, W. N., 1966, Endogenous metabolism of Azotobacter agilis, J. Bacteriol. 92: 687 – 695.

    PubMed  CAS  Google Scholar 

  • Sonnleitner, B., Heinzle, E., Braunegg, G., and Lafferty, R. M., 1979, Formal kinetics of poly-β-hydroxybutyric acid (PHB) production in Alcaligenes eutrophus H16and Mycoplana rubra R14with respect to the dissolved oxygen tension in ammonium-limited batch culture, Eur. J. Appl. Microbiol. Technol. 7: 1 – 10.

    CAS  Google Scholar 

  • Sparling, G. P., 1981, Microcalorimetry and other methods to assess biomass and activity in soil, Soil Biol. Biochem. 13: 93 – 98.

    CAS  Google Scholar 

  • Stahl, S., 1978, Calcium uptake and survival of Bacillus stearothermophilus, Arch. Microbiol. 119: 17 – 24.

    PubMed  CAS  Google Scholar 

  • Stanier, R. Y., Doudoroff, M., Kunisawa, R., and Contopolou, R., 1959, The role of organic substrates in bacterial photosynthesis, Proc. Natl. Acad. Sci. USA 45: 1246 – 1260.

    PubMed  CAS  Google Scholar 

  • Stanley, S. O., and Brown, C. M., 1974, Influence of temperature and salinity on the amino acid pools of some marine pseudomonads, in: The Effect of the Ocean Environment on Microbial Activity( R. R. Colwell and R. Y. Morita, eds.), pp. 92 – 103, University Park Press, Baltimore.

    Google Scholar 

  • Stevens, S. E., Jr., Balkwill, D. L., and Paone, D. A. M., 1981, The effects of nitrogen limitation on the ultrastructure of the cyanobacterium Agmenellum quadruplicatum, Arch. Microbiol. 130: 204 – 212.

    CAS  Google Scholar 

  • Stevenson, L. H., 1978, A case for bacterial dormancy in aquatic systems, Microb. Ecoi 4: 127 – 133.

    Google Scholar 

  • Stevenson, L. H., and Socolofsky, M. D., 1966, Cyst formation and poly-beta-hydroxybutyric acid accumulation in Azotobacter, J. Bacteriol. 91: 304 – 310.

    PubMed  CAS  Google Scholar 

  • Stevenson, L. H., and Socolofsky, M. D., 1972, Encystment of Azotobacter vinelandiiin liquid culture, Antonie van Leeuvenhoek, 38: 605 – 610.

    Google Scholar 

  • Stewart, W. D. P., 1983, Natural environments—Challenges to microbial success and survival, in: Microbes in their Natural Environments( J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 1 – 35, Cambridge University Press, London.

    Google Scholar 

  • Stjernholm, R., 1958, Formation of trehalose during dissimilation of glucose by Propionibacterium, Acta Chem. Scand. 12: 646 – 649.

    CAS  Google Scholar 

  • Stockdale, H., 1967, A comparative survey of poly-β-hydroxybutyrate in the Azotobacteriaceae with special reference to the endogenous metabolism and survival of Azotobacter insigne, Doctoral thesis, University of Hull.

    Google Scholar 

  • Stockdale, H., Ribbons, D. W., and Dawes, E. A., 1968, Occurrence of poly-β-hydroxybutyrate in the Azotobacteriaceae, J. Bacteriol. 95: 1798 – 1803.

    PubMed  CAS  Google Scholar 

  • Stokes, J. L., and Parson, W. L., 1968, Role of poly-β-hydroxybutyrate in survival of Sphaerotilus discophorusduring starvation, Can. J. Microbiol. 14: 785 – 789.

    PubMed  CAS  Google Scholar 

  • Stouthamer, A. H., 1973, Theoretical study on the amount of ATP required for synthesis of microbial cell material, Antonie van Leeuwenhoek 39: 545 – 565.

    PubMed  CAS  Google Scholar 

  • Stouthamer, A. H., 1979, The search for correlation between theoretical and experimental growth yields, in: International Review of Biochemistry, Vol. 21: Microbial Biochemistry( J. R. Quayle, ed.), pp. 1 – 47, University Park Press, Baltimore.

    Google Scholar 

  • Stouthamer, A. H., and Bettenhaussen, C. W., 1977, A continuous culture study of an ATPase-negative mutant of Escherichia coli, Arch. Microbiol. 113: 185 – 189.

    PubMed  CAS  Google Scholar 

  • Strange, R. E., 1966, Stability of β-galactosidase in starved Escherichia coli, Nature (Lond.) 209: 428 – 429.

    CAS  Google Scholar 

  • Strange, R. E., 1968, Bacterial glycogen and survival, Nature (Lond.) 220: 606 – 607.

    CAS  Google Scholar 

  • Strange, R. E., 1976, Microbial Response to Mild Stress, Meadowfield Press, Shildon.

    Google Scholar 

  • Strange, R. E., and Hunter, J. R., 1967, Effect of magnesium on the survival of bacteria in aqueous suspension, in: Microbial Physiology and Continuous Culture( E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), pp. 102 – 121, HMSO, London.

    Google Scholar 

  • Strange, R. E., Dark, F. A., and Ness, A. G., 1961, The survival of stationary phase Aerobacter aerogenesstored in aqueous suspension, J. Gen. Microbiol. 25: 61 – 76.

    CAS  Google Scholar 

  • Sudo, S. Z., and Dworkin, M., 1973, Comparative biology of prokaryotic resting cells, Adv. Microbiol. Physiol. 6: 152 – 224.

    Google Scholar 

  • Suresh, N., Roberts, M. F., Coccia, M., Chikarmane, H. M., and Halvorson, H. O., 1986, Cadmium-induced loss of surface polyphosphate in Acinetobacter lwoffi, FEMS Microbiol. Lett. 36: 91 – 94.

    CAS  Google Scholar 

  • Suresh, N., Warburg, R., Timmerman, M., Wells, J., Coccia, M., Roberts, M. F., and Halvorson, H. O., 1985, New strategies for the isolation of microorganisms responsible for phosphate accumulation, Water Sci. Technol. 17: 99 – 111.

    CAS  Google Scholar 

  • Sussman, A. J., and Gilvarg, C., 1969, Protein turnover in amino-acid-starved strains of Escherichia coliK-12 differing in their ribonucleic acid control, J. Biol. Chem. 224: 6304 – 6306.

    Google Scholar 

  • Sussman, S., and Halvorson, H. O., 1966, Spores, Their Dormancy and Germination, Harper & Row, New York.

    Google Scholar 

  • Swedes, J. S., Sedo, R. J., and Atkinson, D. E., 1975, Relation of growth and protein synthesis to the adenylate energy charge in an adenine-requiring mutant of Escherichia coli, J. Biol. Chem. 250: 6930 – 6938.

    PubMed  CAS  Google Scholar 

  • Szewczyk, E., and Mikucki, J., 1981, Production of α-toxin by starved staphylococci, FEMS Microbiol. Lett.12: 91 – 94.

    CAS  Google Scholar 

  • Szewczyk, E., and Mikucki, J., 1983, Protein A as a substrate of endogenous metabolism in staphylococci, FEMS Microbiol. Lett. 19: 55 – 58.

    CAS  Google Scholar 

  • Szymona, M., 1962, Purification and properties of the new hexokinase utilizing inorganic polyphosphate, Acta Biochim. Polon. 9: 165 – 180.

    CAS  Google Scholar 

  • Szymona, O., and Szumilo, T., 1966, Adenosine triphosphate and inorganic polyphosphate-fructokinases of Mycobacterium phlei, Acta Biochim. Polon. 17: 129 – 143.

    Google Scholar 

  • Szymona, M., Szymona, O., and Kulesza, S., 1962, On the occurrence of inorganic polyphosphate hexokinase in some microorganisms, Acta Microbiol. Polon. 11: 287 – 300.

    CAS  Google Scholar 

  • Tempest, D. W., 1969, Quantitative relationships between inorganic cations and anionic polymers in growing bacteria, in: Microbial Growth( P. Meadow and S. J. Pirt, eds.), pp. 87 – 111, Cambridge University Press, London.

    Google Scholar 

  • Tempest, D. W., 1970, The continuous cultivation of micro-organisms. I. Theory of the chemostat, in: Methods in Microbiology, ( J. R. Norris and D. W. Ribbons, eds.), Vol. II, pp. 259 – 276, Academic, London.

    Google Scholar 

  • Tempest, D. W., and Dicks, J. W., 1967, Inter-relationships between potassium, magnesium, phosphorus and ribonucleic acid in the growth of Aerobacter aerogenesin a chemostat, in: Microbial Physiology and Continuous Culture( E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), pp. 140 – 153, HMSO, London.

    Google Scholar 

  • Tempest, D. W., and Hunter, J. R., 1965, The influence of temperature and pH value on the macromolecular composition of magnesium-limited and glycerol-limited Aerobacter aerogenesgrowing in a chemostat, J. Gen. Microbiol. 41: 267 – 273.

    PubMed  CAS  Google Scholar 

  • Tempest, D. W., and Neijssel, O. M., 1978, Eco-physiological aspects of microbial growth in aerobic nutrient- limited environments, Adv. Microb. Ecol.2: 105 – 153.

    Google Scholar 

  • Tempest, D. W., and Strange, R. E., 1966, Variation in content and distribution of magnesium and its influence on survival in Aerobacter aerogenesgrown in a chemostat, J. Gen. Microbiol. 44: 273 – 279.

    PubMed  CAS  Google Scholar 

  • Tempest, D. W., Neijssel, O. M., and Zevenboom, W., 1983, Properties and performance of micro-organisms in laboratory culture; their relevance to growth in natural ecosystems, in: Microbes in their Natural Environments( J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 119 – 152, Cambridge University Press, London.

    Google Scholar 

  • ten Brink, B., and Konings, W. N., 1980, Generation of an electrochemical proton gradient by lactate efflux in Escherichia colimembrane vesicles, Eur. J. Biochem. 111: 59 – 66.

    PubMed  CAS  Google Scholar 

  • ten Brink, B., and Konings, W. N. 1982, The electrochemical proton gradient and lactate concentration gradient in Streptococcus cremorisgrown in batch culture, J. Bacteriol.152: 682 – 686.

    PubMed  Google Scholar 

  • Thomas, J. A., Cole, R. E., and Langworthy, T. A., 1976, Intracellular pH measurements with a spectroscopic probe generated in situ, Fed. Proc. 35: 1455.

    Google Scholar 

  • Thomas, T. D., and Batt, R. D., 1968, Survival of Streptococcus lactisin starvation conditions, J. Gen. Microbiol. 50: 367 – 382.

    PubMed  CAS  Google Scholar 

  • Thomas, T. D., and Batt, R. D., 1969a, Degradation of cell constituents by starved Streptococcus lactis in relation to survival, J. Gen. Microbiol. 58:347–362.

    Google Scholar 

  • Thomas, T. D., and Batt, R. D., 1969b, Metabolism of exogenous arginine and glucose by starved Streptococcus lactis in relation to survival, J. Gen. Microbiol. 58:371–380.

    Google Scholar 

  • Thompson, J., and Chassy, B. M., 1982, Novel phosphoenolpyruvate-dependent futile cycle in Streptococcus lactis: 2-Deoxy-D-Glucose uncouples energy production from growth, J. Bacteriol. 151: 1454 – 1465.

    PubMed  CAS  Google Scholar 

  • Thompson, J., and Thomas, T. D., 1977, Phosphoenolpyruvate and 2-phosphoglycerate: Endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis, J. Bacteriol. 130: 583 – 595.

    PubMed  CAS  Google Scholar 

  • Thurston, C. F., 1974, Induction and catabolite repression of chondroitinase in batch and chemostat cultures of Proteus vulgaris, J. Gen. Microbiol. 80: 515 – 522.

    PubMed  CAS  Google Scholar 

  • Tinelli, R., 1955a, Biochemistry of sporulation with Bacillus megaterium. I. Composition of spores obtained by deprivation of different carbohydrate substrates, Ann. Inst. Pasteur 88:212–226.

    Google Scholar 

  • Tinelli, R., 1955b, Biochemistry of sporulation of Bacillus megaterium. II. Biochemical modifications and gaseous changes accompanying the sporulation provoked by scarcity of glucose, Ann. Inst. Pasteur 88:364–375.

    Google Scholar 

  • Tomita, K., Saito, T., and Fukui, T., 1983, Bacterial metabolism of poly-β-hydroxybutyrate, in: Biochemistry of Metabolic Processes( D. L. F. Lennon, F. W. Stratman, and R. N. Zahlten, eds.), pp. 353 – 366, Elsevier, Amsterdam.

    Google Scholar 

  • Torrella, F., and Morita, R. Y., 1981, Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater, Appl. Environ. Microbiol. 41: 518 – 527.

    PubMed  CAS  Google Scholar 

  • Uryson, S. O., and Kulaev, I. S., 1968, The presence of polyphosphate glucokinase in some bacteria (in Russian), Dokl. Akad. Nauk. SSSR 183: 957 – 959.

    PubMed  CAS  Google Scholar 

  • Vallee, B. L., 1960, Metal and enzyme interactions: Correlation of composition, function and structure, in: The Enzymes, Vol. 3 ( P. D. Boyer, H. Lardy, and K. Myrback, eds.), pp. 334 – 344, Academic, New York.

    Google Scholar 

  • van Gemerden, H., 1980, Survival of Chromatium vinosumat low light intensities, Arch. Microbiol. 125: 115 – 121.

    Google Scholar 

  • Varma, A. K., and Peck, H. D., Jr., 1983, Utilization of short and long-chain polyphosphates as energy sources for the anaerobic growth of bacteria, FEMS Microbiol. Lett. 16: 281 – 285.

    CAS  Google Scholar 

  • Vela, G. R., 1974, Survival of Azotobacter in dry soil, Appl. Microbiol. 28: 77 – 79.

    PubMed  CAS  Google Scholar 

  • Vela, G. R., and Cagle, G., 1969, Formation of fragile cysts by a strain of Azotobacter chroococcum, J. Gen. Microbiol. 57: 365 – 368.

    PubMed  CAS  Google Scholar 

  • Veldkamp, H., 1970, Enrichment cultures of prokaryotic organisms, Methods Microbiol. 3A: 305 – 361.

    CAS  Google Scholar 

  • Veldkamp, H., 1976a, Continuous Culture in Microbial Physiology and Ecology, Meadowfield Press, Shildon.

    Google Scholar 

  • Veldkamp, H., 1976b, Mixed culture studies with the chemostat, in: Continuous Culture. Vol. 6: Applications and New Fields (A. C. R. Dean, D. C. Ellwood, C. G. T. Evans, and J. Melling, eds.), pp. 315–328, Ellis Horwood, Chichester.

    Google Scholar 

  • Veldkamp, H., 1977, Ecological studies with the chemostat, Adv. Microb. Ecol. 1: 59 – 94.

    CAS  Google Scholar 

  • Veldkamp, H., and Jannasch, H. W., 1972, Mixed culture studies with the chemostat, J. Appl. Chem. Biotechnol. 22: 105 – 123.

    CAS  Google Scholar 

  • Veldkamp, H., and Kuenen, J. G., 1973, The chemostat as a model system for ecological studies, Bull. Ecol. Res. Commun. (Stockh.) 17: 347.

    Google Scholar 

  • Waddell, W. J., and Butler, T. C., 1959, Calculation of intracellular pH from the distribution of 5,5- dimethyl-2,4-oxazolidinedione (DMO). Application to skeletal muscle of the dog, J. Clin. Invest. 38: 720 – 729.

    PubMed  CAS  Google Scholar 

  • Walker, D. J., and Forrest, W. W., 1964, Anaerobic endogenous metabolism in Streptococcus faecalis, J. Bacteriol. 87: 256 – 262.

    PubMed  CAS  Google Scholar 

  • Walker-Simmons, M., and Atkinson, D. E., 1977, Functional capacities and the adenylate energy charge in Escherichia coliunder conditions of nutritional stress, J. Bacteriol. 130: 676 – 683.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J., 1980, Cytoplasmic reserve polysaccharide of Selenomonas ruminantium, Appl. Environ. Microbiol. 39: 630 – 634.

    PubMed  CAS  Google Scholar 

  • Wallen, L. L., and Rohwedder, W. K., 1974, Poly-beta-hydroxylakanoate from activated sludge, Environ. Sci. Technol. 8: 576 – 579.

    CAS  Google Scholar 

  • Ward, A. C., Rowley, B. I., and Dawes, E. A., 1977. Effect of oxygen and nitrogen limitation on poly-β- hydroxybutyrate biosynthesis in ammonium-grown Azotobacter beijerinckii, J. Gen. Microbiol. 102: 61 – 68.

    CAS  Google Scholar 

  • Weathers, P. J., Chee, H. L., and Allen, M. M., 1978, Arginine catabolism in Aphanocapsa6308, Arch. Microbiol. 118: 1 – 6.

    PubMed  CAS  Google Scholar 

  • White, D. C., 1983, Analysis of microorganisms in terms of quantity and activity in natural environments, in: Microbes in their Natural Environments(J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), Cambridge University Press. Symp. Soc. Gen. Microbiol. 34: 37 – 66.

    Google Scholar 

  • White, D. C., 1986, Quantitative physicochemical characterization of bacterial habitats, in: Bacteria in Nature, Vol. 2 ( J. S. Poindexter and E. R. Leadbetter, eds.), pp. 177 – 203, Plenum, New York.

    Google Scholar 

  • Whiting, P. H., Midgley, M., and Dawes, E. A., 1976a, The role of glucose limitation in the regulation of the transport of glucose, gluconate and 2-oxogluconate, and of glucose metabolism in Pseudomonas aeruginosa, J. Gen. Microbiol. 92:304–310.

    Google Scholar 

  • Whiting, P. H., Midgley, M., and Dawes, E. A., 1976b, The regulation of transport of glucose, gluconate and 2-oxogluconate and of glucose catabolism in Pseudomonas aeruginosa, Biochem. J. 154: 659 – 668.

    CAS  Google Scholar 

  • Wiame, J. M., Harpigny, R., and Dothey, R. G., 1959, A new type of Acetobacter: Acetobacter acidophilumprov. sp., J. Gen. Microbiol. 20: 165 – 172.

    PubMed  CAS  Google Scholar 

  • Willetts, N. S., 1965, Protein degradation during diauxic growth of Escherichia coli, Biochem. Biophys. Res. Commun. 20: 692 – 696.

    PubMed  CAS  Google Scholar 

  • Wilkinson, J. F., 1959, The Problem of energy-storage compounds in bacteria, Exp. Cell Res. (Suppl.) 7: 111 – 130.

    Google Scholar 

  • Wilkinson, J. F., and Munro, A. L. S., 1967, The influence of growth limiting conditions on the synthesis of possible carbon and energy storage polymers in Bacillus megaterium, in: Microbial Physiology and Continuous Culture( E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), pp. 173 – 185, HMSO, London.

    Google Scholar 

  • Williams, S. T., Shameemullah, M., Watson, E. T., and Mayfield, C. I., 1972, Studies on the ecology of actinomycetes in soil. VI. The influence of moisture tension on growth and survival, Soil Biol. Biochem. 4: 215 – 225.

    Google Scholar 

  • Wimpenny, J. W. T., 1981, Spatial order in microbial ecosystems, Biol. Rev. 56: 295 – 342.

    CAS  Google Scholar 

  • Wimpenny, J. W. T., 1982, Responses of microbes to physical and chemical gradients, Philos. Trans. R. Soc. Lond. [Biol] 297: 497 – 515.

    CAS  Google Scholar 

  • Wimpenny, J.W. T., Lovitt, R. W., and Coombs, J. P., 1983, Laboratory model systems for the investigation of spatially and temporally organised microbial ecosystems, in: Microbes in their Natural Environments, Vol. 34 (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.) Symposia for the Society for General Microbiology, pp. 67 – 117, Cambridge University Press, London.

    Google Scholar 

  • Winder, F. G., and Denneny, J. M., 1957, The metabolism of inorganic polyphosphate in Mycobacteria, J. Gen. Microbiol 17: 573 – 585.

    PubMed  CAS  Google Scholar 

  • Winogradsky, S., 1938, Sur la morphologie et l’œcologie des Azotobacter, Ann. Inst. Pasteur 60: 351 – 400.

    Google Scholar 

  • Wodzinski, R. J., and Frazier, W. C., 1961, Moisture requirements of bacteria. III. Influence of temperature, pH, and malate and thiamine concentration on requirements of Lactobacillus viridescens, J. Bacteriol. 81: 359 – 365.

    PubMed  CAS  Google Scholar 

  • Wood, H. G., 1977, Some reactions in which inorganic pyrophosphate replaces ATP and serves as a source of energy, Fed. Proc. 36: 2197 – 2205.

    PubMed  CAS  Google Scholar 

  • Wright, L. F., Milne, D. P., and Knowles, C. J., 1979, The regulatory effects of growth rate and cyclic AMP levels on carbon metabolism and respiration in Escherichia coliK-12, Biochim. Biophys. Acta 583: 73 – 80.

    PubMed  CAS  Google Scholar 

  • Wright, R. T., 1978, Measurement and significance of specific activity in the heterotrophic bacteria of natural waters, Appl. Environ. Microbiol. 36: 297 – 305.

    PubMed  CAS  Google Scholar 

  • Yamomoto, T. H., Mevel-Ninio, M., and Valentine, R. C., 1973, Essential role of membrane ATPase or coupling factor for anaerobic growth and anaerobic active transport in Escherichia coli, Biochim. Biophys. Acta 314: 267 – 275.

    Google Scholar 

  • Zeikus, J. G., 1977, The biology of methanogenic bacteria, Bacteriol. Rev. 41: 514 – 541.

    PubMed  CAS  Google Scholar 

  • Zevenhuizen, L. P. T. M., 1966, Function, structure and metabolism of the intracellular polysaccharide of Arthrobacter, Meded. Landbouwhogeschool, Wagen. publication No. 66 - 10.

    Google Scholar 

  • Zevenhuizen, L. P. T. M., and Ebbink, A. G., 1974, Interrelations between glycogen, poly-p-hydroxybutyric acid and lipids during accumulation and subsequent utilization in a Pseudomonas, Antonie van Leeuwen- hoek 40: 103 – 120.

    PubMed  CAS  Google Scholar 

  • Zimmermann, R., Itturriaga, R., and Becker-Birck, J., 1978, Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration, Appl. Environ. Microbiol. 36: 926 – 935.

    PubMed  CAS  Google Scholar 

  • Zuber, H., 1979, Structure and function of enzymes from thermophic(sic) microorganisms, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 393 – 415, Verlag Chemie, Berlin.

    Google Scholar 

  • Zychlinsky, E., and Matin, A., 1983, Effect of starvation on cytoplasmic pH, proton motive force, and viability of an acidophilic bacterium, Thiobacillus acidophilus, J. Bacteriol. 153: 371 – 374.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Dawes, E.A. (1989). Growth and Survival of Bacteria. In: Poindexter, J.S., Leadbetter, E.R. (eds) Bacteria in Nature. Bacteria in Nature, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0803-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0803-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8090-3

  • Online ISBN: 978-1-4613-0803-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics