Skip to main content

The Structure of Bacteria

  • Chapter
Bacteria in Nature

Part of the book series: Bacteria in Nature ((BANA,volume 3))

Abstract

By nature, humans are inquisitive animals: this is the foundation of scientific investigation. However, we sometimes have difficulty in comprehending, and therefore interpreting, the data; this is especially true when working with systems much different from those of our own experience. In these cases, we are forced to attempt to comprehend the system by the use of analogy. For example, when describing the nature of fundamental quark particles, nuclear physicists have allocated to them the characteristics of flavor and color. These words are used because different flavors or kinds of quarks exist, and all possess one of three colors that combine in quantum mechanics reminiscent of the way visual colors coalesce. The words color and flavor have nothing whatsoever to do with our visible and tangible world, but the analogy makes it easier to understand. Analogies are advantageous, as they make difficult concepts simpler by equating them with the experience of our everyday life. However, we must also realize that they may make our interpretation too shallow for those uncertain worlds beyond our total grasp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archibald, E. R., Wilson, J. D., Allison, D. P., and Sheehy, R. J., 1983, Membrane-bound fractions of R6K plasmid DNA in Escherichia coli, J. Bacteriol. 156: 414 – 418.

    Google Scholar 

  • Armstrong, R. E., and Walsby, A. E., 1981, The gas vesicle: a rigid membrane enclosing a hollow space, in: Organization of Prokaryotic Cell Membranes, Vol. II ( B. K. Ghosh, ed.), pp. 95 – 129, CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  • Armstrong, G. D., Frost, L. S., Vogel, H. J., and Paranchych, W., 1981, Nature of the carbohydrate and phosphate with ColB2 and EDP208 pilin, J. Bacteriol. 145: 1167 – 1176.

    PubMed  CAS  Google Scholar 

  • Barghoorn, E. S., and Tyler, S. A., 1965, Microorganisms from the gunflint chert, Science 147: 563 – 577.

    PubMed  CAS  Google Scholar 

  • Baross, J. A., and Deming, J. W., 1983, Growth of “black smoker” bacteria at temperatures of at least 250°C, Nature (London) 303: 423 – 426.

    CAS  Google Scholar 

  • Bayer, M. E., 1968, Areas of adhesion between wall and membrane of Escherichia coli, J. Gen. Microbiol. 53: 395 – 404.

    CAS  Google Scholar 

  • Bayer, M. E., 1979, The fusion sites between outer membrane and cytoplasmic membrane of bacteria: Their role in membrane assembly and virus infection, in: Bacterial Outer Membranes: Biogenesis and Functions( M. Inouye, ed.), pp. 167 – 202, Wiley, New York.

    Google Scholar 

  • Bayer, N. E., and Thurow, H., 1977, Polysaccharide capsule of Escherichia coli: Microscope study of its size, structure, and sites of synthesis, J. Bacteriol. 130: 991 – 936.

    Google Scholar 

  • Bayer, M. H., Costello, G. P., and Bayer, M., 1982, Isolation and partial characterization of membrane vesicles carrying markers of membrane adhesion sites, J. Bacteriol. 149: 758 – 767.

    PubMed  CAS  Google Scholar 

  • Bell, R. M., Mavis, R. D., Osborne, M. J., and Vagelos, P. R., 1971, Enzymes of phospholipid metabolism: Location in the cytoplasmic and outer membrane of the cell envelope of Escherichia coliand Salmonella typhimurium, Biochim. Biophys. Acta 249: 628 – 635.

    PubMed  CAS  Google Scholar 

  • Berg, H. C., 1974, Dynamic properties of bacterial flagellar motors, Nature (Lond.) 249: 77 – 79.

    CAS  Google Scholar 

  • Berg, H. C., 1975, Bacterial behavior, Nature (Lond.) 254: 389 – 392.

    CAS  Google Scholar 

  • Beveridge, T. J., 1980, Bacterial structure and its implications in the mechanisms of infection: A short review, Can. J. Microbiol. 26: 643 – 653.

    PubMed  CAS  Google Scholar 

  • Beveridge, T. J., 1981, Ultrastructure, chemistry, and function of the bacterial wall, Int. Rev. Cytol. 72: 229 – 317.

    PubMed  CAS  Google Scholar 

  • Beveridge, T. J., 1984, Mechanisms of the binding of metallic ions to bacterial walls and the possible impact on microbial ecology, in: Current Perspectives in Microbial Ecology( C. A. Reddy and M. J. Klug, eds.), pp. 601 – 607, American Society of Microbiology, Washington, D. C.

    Google Scholar 

  • Beveridge, T. J., and Davies, J. A., 1983, Cellular responses of Bacillus subtilisand Escherichia colito the Gram stain, J. Bacteriol. 156: 846 – 858.

    PubMed  CAS  Google Scholar 

  • Beveridge, T. J., and Jack, T., 1982, The binding of an inert, cationic osmium probe to walls of Bacillus subtilis, J. Bacteriol. 149: 1120 – 1123.

    PubMed  CAS  Google Scholar 

  • Beveridge, T. J., and Koval, S. F., 1981, Binding of metals to cell envelopes of Escherichia coliK-12, Appl. Environ. Microbiol. 42: 325 – 335.

    PubMed  CAS  Google Scholar 

  • Beveridge, T. J., and Murray, R. G. E., 1974, Superficial macromolecular arrays on the cell wall of Spirillum putridiconchylium, J. Bacteriol. 119: 1019 – 1038.

    PubMed  CAS  Google Scholar 

  • Beveridge, T. J., and Murray, R. G. E., 1980, Sites of metal deposition in the cell wall of Bacillus subtilis, J. Bacteriol. 141: 876 – 887.

    PubMed  CAS  Google Scholar 

  • Beveridge, T. J., Forsberg, C. W., and Doyle, R. J., 1982, Major sites of metal binding in Bacillus licheniformiswalls, J. Bacteriol. 150: 1438 – 1448.

    PubMed  CAS  Google Scholar 

  • Beveridge, T. J., Meloche, J. D., Fyfe, W. S., and Murray, R. G. E., 1983, Diagenesis of metals chemically complexed to bacteria: Laboratory formation of metal phosphates, sulfides, and organic condensates in artificial sediments, Appl. Environ. Microbiol. 45: 1094 – 1108.

    PubMed  CAS  Google Scholar 

  • Bisset, K. A., and Pease, P., 1957, The distribution of flagella in dividing bacteria, J. Gen. Microbiol. 16: 382 – 384.

    PubMed  CAS  Google Scholar 

  • Blakemore, R. P., 1975, Magnetotactic bacteria, Science 190: 377 – 379.

    PubMed  CAS  Google Scholar 

  • Blakemore, R. P., 1982, Magnetotatic bacteria, Annu. Rev. Microbiol. 36: 217 – 238.

    PubMed  CAS  Google Scholar 

  • Bradley, D. E., 1972, A study of pili on Pseudomonas aeruginosa, Genet. Res. 19: 39 – 51.

    Google Scholar 

  • Brassell, S. C., and Eglinton, G., 1981, Biochemical significance of a novel sedimentary C27 stanol, Nature (Lond.) 290: 579 – 582.

    CAS  Google Scholar 

  • Braun, V., Gnirke, H., Henning, U., and Rehn, K., 1973, Model for the structure of the shape-maintaining layer of Escherichia colicell envelope, J. Bacteriol. 114: 1264 – 1270.

    PubMed  CAS  Google Scholar 

  • Brinton, C. C., Jr., 1971, The properties of sex pili, the viral nature of conjugal genetic transfer systems, and some possible approaches to the control of bacterial drug resistance, Crit. Rev. Microbiol. 1: 105 – 160.

    Google Scholar 

  • Brinton, C. C., Jr., 1965, The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in Gram negative bacteria, Trans. NY Acad. Sci. 27: 1003 – 1054.

    CAS  Google Scholar 

  • Brock, F. M., and Murray, R. G. E., 1983, The ATPase of Campylobacter fetussubsp. jejuni, Proc. Am. Soc. Microbiol. J12: 173.

    Google Scholar 

  • Bryant, R. D., McGroarty, K. M., Costerton, J. W., and Laishley, E. J., 1983, Isolation and characterization of a new acidophilic Thiobacillusspecies (T. albertis), Can. J. Microbiol. 29: 1159 – 1170.

    Google Scholar 

  • Burdett, I. D. J., and Murray, R. G. E., 1974, Septum formation in Escherichia coli: Characterization of septal structure and the effects of antibiotics on cell division, J. Bacteriol. 119: 303 – 324.

    PubMed  CAS  Google Scholar 

  • Burge, R. E., Fowler, A. G., and Reaveley, D. A., 1977, Structure of the peptidoglycan of bacterial cell walls. I, J. Mol. Biol. 117: 927 – 953.

    PubMed  CAS  Google Scholar 

  • Burman, L. G., Reichler, J., and Park, J. T., 1983, Evidence for multisite growth of Escherichia colimurein involving concomitant endopeptidase and transpeptidase activities, J. Bacteriol. 156: 386 – 392.

    PubMed  CAS  Google Scholar 

  • Caulfield, M. P., Tai, P. C., and Davis, B. D., 1983, Association of penicillin-binding proteins and other enzymes with the ribosome-free membrane fraction of Bacillus subtilis, J. Bacteriol. 156: 1 – 5.

    PubMed  CAS  Google Scholar 

  • Chapman, G. B., and Hillier, J., 1953, Electron microscopy of ultrathin sections of bacteria. I. Cellular division in Bacillus cereus, J. Bacteriol. 66: 362 – 373.

    PubMed  CAS  Google Scholar 

  • Cohen-Bazire, G., Pfennig, N., and Kunisawa, R., 1964, The fine structure of green bacteria, J. Cell Biol. 22: 207 – 225.

    PubMed  CAS  Google Scholar 

  • Collins, M. L. P., Mallon, D. E., and Niederman, R. A., 1980, Assessment of Rhodopseudomonas sphaeroideschromatophore membrane asymmetry through bilateral antiserum adsorption studies, J. Bacteriol. 143: 221 – 230.

    PubMed  CAS  Google Scholar 

  • Conn, H. J., and Dimmick, I., 1947, Soil bacteria similar in morphology to Mycobacteriumand Corynebacteri- um, J. Bacteriol. 54: 291 – 303.

    Google Scholar 

  • Costerton, J. W., 1979, The role of electron microscopy in the elucidation of bacterial structure and function, Annu. Rev. Microbiol. 33: 459 – 479.

    PubMed  CAS  Google Scholar 

  • Costerton, J. W., Irvin, R. T., and Cheng, K.-J., 1981a, The bacterial glycocalyx in nature and disease, Annu. Rev. Microbiol. 35:299–324.

    Google Scholar 

  • Costerton, J. W., Irvin, R. T., and Cheng, K.-J., 1981b, The role of bacterial surface structures in pathogenesis, Crit. Rev. Microbiol. 8:303–338.

    Google Scholar 

  • Coulton, J. W., and Murray, R. G. E., 1977, Membrane-associated components of bacterial flagellar apparatus, Biochem. Biophys. Acta 465: 290 – 310.

    PubMed  CAS  Google Scholar 

  • Daneo-Moore, L., Dicker, D., and Higgins, M. L., 1980, Structure of the nucleoid in cells of Streptococcus faecalis, J. Bacteriol. 141: 928 – 937.

    PubMed  CAS  Google Scholar 

  • Davies, J. A., Anderson, G. K., Beveridge, T. J., and Clark, H. C., 1983, Chemical mechanism of the Gram stain and the synthesis of a new electron-opaque marker for electron microscopy which replaces the iodine mordant of the stain, J. Bacteriol. 156: 837 – 845.

    PubMed  CAS  Google Scholar 

  • Dean, G. E., Aizawa, S.-I., and Macnab, R. M., 1983, Fla A II (motC, cheV)of Salmonella typhimuriumis a structural gene involved in energization and switching of the flagellar motor, J. Bacteriol. 154: 84 – 91.

    CAS  Google Scholar 

  • deBoer, W. E., 1975, Ultrastructural changes in bacteria induced by the environment, doctoral dissertation, Leiden.

    Google Scholar 

  • deBoer, W. E., Golten, C., and Scheffers, W. A., 1975, Effects of some physical factors on flagellation and swarming of Vibrio alginolyticus, Neth. J. Sea Res. 9: 197 – 213.

    Google Scholar 

  • Decker, K. P., Brusilow, W. S. A., Gunsalus, R. F., and Simoni, R. D., 1982, In vitroassociation of the F0 polypeptides of the Escherichia coliproton translocating ATPase, J. Bacteriol, 152: 815 – 821.

    PubMed  CAS  Google Scholar 

  • DePamphilis, M. L., and Adler, J., 1971, Attachment of the flagellar basal bodies to the cell envelope: Specific attachment to the outer lipopolysaccharide membrane and the cytoplasmic membrane, J. Bacteriol. 105: 396 – 407.

    PubMed  CAS  Google Scholar 

  • deSmet, N. J., Eggink, G., Witholt, B., Kingma, J., and Wynberg, H., 1983, Characterization of intracellular inclusions formed by Pseudomonas oleoyoransduring growth on octane, J. Bacteriol. 154: 870 – 878.

    CAS  Google Scholar 

  • DesRosier, J. P., and Cano Lara, J., 1981, Isolation and properties of pili from spores of Bacillus cereus, J. Bacteriol. 145: 613 – 619.

    PubMed  CAS  Google Scholar 

  • DiMasi, D. R., White, J. C., Schnaitman, C. A., and Bradbeer, C., 1973, Transport of vitamin B12 in Echerichia coli: common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope, J. Bacteriol. 115: 506 – 513.

    CAS  Google Scholar 

  • DiRienzo, J. M., Nakamura, K., and Inouye, M., 1978, The outer membrane of Gram-negative bacteria; Biosynthesis, assembly and functions, Annu. Rev. Biochem. 47: 481 – 532.

    PubMed  CAS  Google Scholar 

  • Doetsch, R. N., and Sjoblad, R. D., 1980, Flagellar structure and function in eubacteria, Annu. Rev. Microbiol. 34: 69 – 108.

    PubMed  CAS  Google Scholar 

  • Dougan, G., Dowd, G., and Kehoe, M., 1983, Organization of K88ac-encoded polypeptides in the Escherichia colicell envelope: Use of minicells and outer membrane mutants for studying assembly of pili, J. Bacteriol. 153: 364 – 370.

    PubMed  CAS  Google Scholar 

  • Doyle, R. J., Matthews, T. A., and Streips, U. N., 1980a, Chemical basis for selectivity of metal ions by the B. subtiliscell wall, J. Bacteriol. 143: 471 – 480.

    CAS  Google Scholar 

  • Doyle, R. J., Streips, U. N., Imada, S., Fan, V. S. C., and Brown, W. C., 1980b, Genetic transformation with cell wall-associated deoxyribonucleic acid in Bacillus subtilis, J. Bacteriol. 144: 957 – 966.

    CAS  Google Scholar 

  • Dubochet, J., McDowall, A. W., Menge, B., Schmid, E. N., and Lickfield, K. G., 1983, Electron microscopy of frozen-hydrated bacteria, J. Bacteriol. 155: 381 – 390.

    PubMed  CAS  Google Scholar 

  • Duguid, J. P., and Wilkinson, J. F., 1961, Environmentally induced changes in bacterial morphology, Symp. Soc. Gen. Microbiol. 11: 69 – 99.

    Google Scholar 

  • Dworkin, M. D., 1979, Spores, cysts, and stalks, in: The Bacteria. A Treatise on Structure and Function ( J. R. Sakatch and L. N. Ornstron, eds.), pp. 2 – 84, Academic, New York.

    Google Scholar 

  • Easterbrook, K. B., 1974, The configuration of bacterial spines, Proc. Can. Microsc. Soc. 1: 27.

    Google Scholar 

  • Easterbrook, K. B., and Coombs, R. W., 1976, Spinin—The subunit protein of bacterial spinae, Can. J. Microbiol. 22: 438 – 440.

    PubMed  CAS  Google Scholar 

  • Easterbrook, K. B., and Sperker, S., 1982, Physiological control of bacterial spinae production in complex medium and their value a indicators of spina function, Can. J. Microbiol. 28: 130 – 136.

    Google Scholar 

  • Easterbrook, K. B., Willison, J. H. M., and Coombs, R. W., 1976, Arrangement of morphological subunits in bacterial spinae, Can. J. Microbiol. 22: 619 – 629.

    PubMed  CAS  Google Scholar 

  • Eglinton, G., Scott, P. M., Belsky, T., Burlingame, A. L., and Calvin, M., 1964, Hydrocarbons of biological origin from a one-billion-year-old sediment, Science 145: 263 – 264.

    PubMed  CAS  Google Scholar 

  • Ellar, D. J., 1978, Membrane fluidity in microorganisms, in: Companion to Microbiology. Selected Topics for Further Study( A. T. Bull and P. M. Meadow, eds.), Longman, London.

    Google Scholar 

  • Feher, G., 1971, Some chemical and physical properties of a bacterial reaction center particle and its primary photochemical reactants, Photochem. Photobiol. 14: 373 – 387.

    PubMed  CAS  Google Scholar 

  • Ferguson, T. J., and Mah, R. A., 1983, Isolation and characterization of an H2-oxidizing thermophilic meth- anogen, Appl. Environ. Microbiol. 45: 265 – 274.

    PubMed  CAS  Google Scholar 

  • Ferris, F. G., Beveridge, T. J., Marceau-Day, M. L., and Larson, A. D., 1984, Structure and cell envelope associations of flagellar basal complexes of Vibrio choleraeand Campylobacter fetus, Can. J. Microbiol. 30: 322 – 333.

    PubMed  CAS  Google Scholar 

  • Firsow, N. N., and Drews, G., 1977, Differentiation of the intracytoplasmic membranes of Rhodopseudomonas palustrisinduced by variations of oxygen partial pressure or light intensity, Arch. Microbiol. 115: 299 – 306.

    PubMed  CAS  Google Scholar 

  • Fitz-James, P. C., 1960, Participation of the cytoplasmic membrane in the growth and spore formation of bacilli, J. Biophys. Biochem. Cytol. 8: 507 - 528.

    PubMed  CAS  Google Scholar 

  • Formanek, H., 1978, A three dimensional model of the digestion of peptidoglycan by lysozyme, Biophys. Struct. Mechanism 4: 1 – 14.

    CAS  Google Scholar 

  • Formanek, H., Formanek, S., and Wawra, H., 1974, A three-dimensional atomic model of the murein layer of bacteria, Eur. J. Biochem. 46: 279 – 294.

    PubMed  CAS  Google Scholar 

  • Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magrum, L. J., Zablen, L. B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N., and Woese, C. R., 1980, The phylogeny of prokaryotes, Science 209: 457 – 463.

    PubMed  CAS  Google Scholar 

  • Friedberg, I., and Avigad, G., 1968, Structures containing polyphosphate in Micrococcus lysodeikticus, J. Bacteriol. 96: 544 – 553.

    PubMed  CAS  Google Scholar 

  • Friedmann, E. I., and Ocampo-Friedman, R., 1984, Endolithic microorganisms in extreme dry environments: analysis of a lithobiontic habitat, in: Current Perspectives in Microbial Ecology( M. J. Klug and C. A. Reddy, eds.), pp. 177 – 185, American Society of Microbiology, Washington, D.C.

    Google Scholar 

  • Frost, L. S., and Paranchych, W., 1977, Composition and molecular weight of pili purified from Pseudomonas aeruginosaK, J. Bacteriol. 131: 259 – 269.

    PubMed  CAS  Google Scholar 

  • Fuerst, J. A., and Hay ward, A. C., 1969, Surface appendages similar to fimbriae (pili) on Pseudomonas aeruginosaspecies, J. Gen. Microbiol. 58: 227 – 237.

    PubMed  CAS  Google Scholar 

  • Funahara, Y., and Nikaido, H., 1980, Asymmetric location of lipopolysaccharides on the outer membrane of Salmonella typhimurium, J. Bacteriol. 141: 1463 – 1465.

    PubMed  CAS  Google Scholar 

  • Gill, P. G., and Agabian, N., 1982, A comparative structural analysis of the flagellin monomers of Caulobacter crescentusindicates that these proteins are encoded by two genes, J. Bacteriol. 150: 925 – 933.

    PubMed  CAS  Google Scholar 

  • Gilleland, H. E., Jr., and Murray, R. G. E., 1975, Demonstration of cell division by septation in a variety of gram-negative rods, J. Bacteriol. 121: 721 – 725.

    PubMed  Google Scholar 

  • Glauert, A. M., Kerridge, D., and Home, R. W., 1963, The fine structure and mode of attachment of sheathed flagellum of Vibrio metchnikoyii, J. Cell Biol. 18: 327 – 336.

    PubMed  CAS  Google Scholar 

  • Goodell, E. W., and Schwarz, U., 1983, Cleavage and resynthesis of peptide cross bridges in Escherichiamurein, J. Bacteriol. 156: 136 – 140.

    PubMed  CAS  Google Scholar 

  • Gorby, Y. A., Beveridge, T. J., and Blakemore, R. P., 1988, Characterization of the bacterial magnetosome membrane, J. Bacteriol. 170: 834 – 831.

    PubMed  CAS  Google Scholar 

  • Greenawalt, J. W., and Whiteside, T. L., 1975, Mesosomes: Membranous bacterial organelles, Bacteriol. Rev. 39: 405 – 463.

    PubMed  CAS  Google Scholar 

  • Griffin, A. M., and Robbins, M. L., 1944, The flagellation of Listeria monocytogenes, J. Bacteriol. 48: 114 – 115.

    PubMed  CAS  Google Scholar 

  • Hancock, R. E., Hankte, K., and Braun, V., 1976, Iron transport in Escherichia coli: Involvement of the colicin B receptor and of a citrate-inducible protein, J. Bacteriol. 127: 1370 – 1375.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., 1966, Inorganic polyphosphates in biology: Structure, metabolism and function, Bacteriol. Rev. 30: 772 – 794.

    PubMed  CAS  Google Scholar 

  • Hederstedt, L., and Rutberg, L., 1983, Orientation of succinic dehydrogenase and cytochrome b558 in the Bacillus subtiliscytoplasmic membrane, J. Bacteriol. 153: 57 – 65.

    PubMed  CAS  Google Scholar 

  • Hemmingsen, B. B., and Hemmingsen, E. A., 1980, Rupture of the cell envelope by induced intracellular gas phase expansion in gas vacuolate bacteria, J. Bacteriol. 143: 841 – 846.

    PubMed  CAS  Google Scholar 

  • Henderson, R., 1977, The purple membrane from Halobacterium halobium, Annu. Rev. Biophys. Bioeng. 6: 87 – 109.

    CAS  Google Scholar 

  • Henrici, A. T., 1925, A statistical study of the form and growth of the cholera vibrio, J. Infect. Dis. 37: 75 – 81.

    Google Scholar 

  • Higgins, M. L., and Daneo-Moore, L., 1974, Factors influencing the frequency of mesosomes observed in fixed and unfixed cells of Streptococcus faecalis, J. Cell Biol. 6: 288 – 300.

    Google Scholar 

  • Higgins, M. L., Tsein, H. C., and Daneo-Moore, L., 1976, Organization of mesosomes in fixed and unfixed cells, J. Bacteriol. 127: 1519 – 1523.

    PubMed  CAS  Google Scholar 

  • Higgins, M. L., Parks, L. C., and Daneo-Moore, L., 1983, The mesosome, in: Organization of Prokaryotic Cell Membranes, Vol. II (B. K., Ghosh, ed.), pp. 75 – 94, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Hirota, Y., Suzuki, Y., Nishimura, Y., and Yasuda, Y., 1977, On the process of cellular division in Escherichia coli: A mutant of E. colilacking a murein-lipoprotein, Proc. Natl. Acad. Sci. USA 74: 1417 – 1420.

    PubMed  CAS  Google Scholar 

  • Hobot, J. A., Carlemalin, E., Villiger, W., and Kellenberger, E., 1984, Periplasmic gel: new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods, J. Bacteriol. 160: 143 – 152.

    PubMed  CAS  Google Scholar 

  • Hobot, J. A., Villiger, W., Escaig, J., Maeder, M., Ryter, A., and Kellenberger, E., 1985, Shape and fine structure of nucleoids observed on sections of ultrarapidly frozen and cryosubstituted bacteria, J. Bacteriol. 162: 960 – 971.

    PubMed  CAS  Google Scholar 

  • Holt, S. C., and Beveridge, T. J., 1982, Electron microscopy: Its development and application to microbiology, Can. J. Microbiol. 28: 1 – 53.

    PubMed  CAS  Google Scholar 

  • Holt, S. C., Conti, S. F., and Fuller, R. C., 1966, Photosynthetic apparatus in the green bacterium Chloropseu- domonas ethylicum, J. Bacteriol. 91: 311 – 323.

    PubMed  CAS  Google Scholar 

  • Hoyle, B., and Beveridge, T. J., 1983, Binding of metallic ions to the outer membrane of Escherichia coli, Appl. Environ. Microbiol. 46: 749 – 752.

    PubMed  CAS  Google Scholar 

  • Hoyle, B., and Beveridge, T. J., 1984, Metal binding by the peptidoglycan sacculus of Escherichia coli, Can. J. Microbiol. 30: 204 – 211.

    PubMed  CAS  Google Scholar 

  • Hughes, R. C., and Thurman, P. F., 1970, Some structural features of the teichoic acid of Bacillus licheniformisNCTC 6346 cell walls, Biochem. J. 117: 441 – 449.

    PubMed  CAS  Google Scholar 

  • Ingraham, J. L., Maale, C., and Neidhardt, F. C., 1983, Growth of the Bacterial Cell, Sinauer, Sunderland Massachusetts.

    Google Scholar 

  • James, A. M., 1979, Molecular aspects of biological surfaces, Chem. Soc. Rev. 8: 389 - 418.

    CAS  Google Scholar 

  • Jones, G. W., and Rutter, J. M., 1972, Role of the K88 antigen in the pathogenesis of neonatal diarrhea caused by Eshcherichia coliin piglets, Infect. Immun. 5: 595 – 605.

    Google Scholar 

  • Johnson, R. C., Walsh, M. P., Fly, B., and Shapiro, L., 1979, Flagellar hook and basal complex of Caulobac- ter crescentus, J. Bacteriol. 138: 984 – 989.

    PubMed  CAS  Google Scholar 

  • Kaplan, S., and Arntzen, C. J., 1982, Photosynthetic membrane structure and function, in: Photosynthesis: Comparative Aspects of Bacteria and Green Plants( I. Govinjee ed.), pp. 65 - 153, Academic, New York.

    Google Scholar 

  • Karl, D. M., Wirsen, C. O., and Jannasch, H. 1980, Deep-sea primary production at the Galapagos hydrother- mal vents, Science 207: 1345 – 1347.

    CAS  Google Scholar 

  • Kell, D. B., Doddema, H. J., Morris, J. G., and Vogels, G. D., 1981, Energy coupling in methanogens, in: Proceedings of the International Symposium on Microbial Growth on Cj Compounds( H. Dalton, ed.), p. 159 – 170, Hey den and Sons, London.

    Google Scholar 

  • Koch, A. L., 1982, On the growth and form of Escherichia coli, J. Gen. Microbiol. 128: 2527 – 2540.

    PubMed  CAS  Google Scholar 

  • Koch, A. L., 1983, The surface stress theory of microbial morphogenesis, Adv. Microb. Physiol. 24: 301 – 367.

    PubMed  CAS  Google Scholar 

  • Koch, A. L., 1988, Speculations on the growth strategy of prosthecate bacteria, Can. J. Microbiol. 34:390– 394.

    Google Scholar 

  • Koch, A. L., Higgins, M. L., and Doyle, R. J., 1981a, Surface tension-like forces determine bacterial shapes: Streptococcus faecium, J. Gen. Microbiol. 123: 151 – 161.

    CAS  Google Scholar 

  • Koch, A. L., Higgins, M. L., and Doyle, R. J., 1982, Surface stress theory of bacterial shapes, J. Gen. Microbiol. 128: 927 – 946.

    PubMed  CAS  Google Scholar 

  • Koch, A. L., Mobley, H. L. T., Doyle, R. J., and Streips, U. N., 19816, The coupling of wall growth and chromosome replication in gram-positive rods, FEMS Microbiol. Lett. 12:201–208.

    Google Scholar 

  • König, H., and Stetter, K. O., 1982, Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines, Zentralbl. Bakteriol. Hyg. C3:478– 490.

    Google Scholar 

  • Koops, H.-P., Harms, H., and Wehrmann, H., 1976, Isolation of a moderate halophilic ammonia-oxidizing bacterium, Nitrosococcus mobilisnov. sp., Arch. Microbiol. 107: 277 – 282.

    PubMed  CAS  Google Scholar 

  • Korhonen, T. K., Lounatmaa, K., Ranta, H., and Kuusi, N., 1980, Characterization of type 1 pili of Salmonella typhimuriumLT2, J. Bacteriol. 144: 800 – 805.

    PubMed  CAS  Google Scholar 

  • Kumazawa, N., and Yanagama, R., 1972, Chemical properties of the pili of Corynebacterium renale, Infect. Immun. 5: 27 – 30.

    PubMed  CAS  Google Scholar 

  • Labischinski, H., Barnickel, G., and Nauman, D., 1983, The state of order of bacterial peptidoglycan, in: The Target of Penicillin. The Murein Sacculus of Bacterial Cell Walls: Architecture and Growth. Proceedings of the International FEMS Symposium, Berlin, West, Germany, March 13–18, 1983 (R. Hakenbeck, J.-V. Holtje, and H. Labischinski, eds.), pp. 49–54, de Gruyter, Berlin.

    Google Scholar 

  • Lagenaur, C., and Agabian, N., 1977, Caulobacter crescentuspili: Structure and stage-specific expression, J. Bacteriol. 131: 340 – 346.

    CAS  Google Scholar 

  • Laishley, E. J., MacAlister, T. J., Clements, I., and Young, C., 1973, Isolation and morphology of native intracellular polyglucose granules from Clostridium pasteurianum, Can. J. Microbiol. 19: 991 – 994.

    PubMed  CAS  Google Scholar 

  • Läuger, P., 1977, Ion transport and rotation of bacterial flagella, Nature (Lond.) 268: 360 – 362.

    Google Scholar 

  • Liu, M.-C., W. J., Peck, H. D., Jr., and LeGall, J., 1983, Comparison of cytochromes from anaerobically and aerobically grown cells of Pseudomonas perfectomarinus, J. Bacteriol. 154: 278 – 286.

    PubMed  CAS  Google Scholar 

  • Lo, T. C. Y., 1979, The molecular mechanisms of substrate transport in gram-negative bacteria, Can. J. Biochem. 57: 289 – 301.

    PubMed  CAS  Google Scholar 

  • Lominski, I., Cameron, J., and Wyllie, G., 1958, Chaining and unchaining Streptococcusfaecalis—A hypothesis on the mechanism of bacterial cell separation, Nature (Lond.) 181: 1477.

    CAS  Google Scholar 

  • Lotz, W., and Pfister, H., 1975, Attachment of a long-tailed Rhizobiumbacteriophage to the pili of its host, J. Virol. 16: 725 – 728.

    PubMed  CAS  Google Scholar 

  • Luria, S. E., 1960, The bacterial protoplasm: Composition and organization, in: The Bacteria. A Treatise on Structure and Function, Vol. 1. ( I. C. Gunsalus and R. Y. Stanier, eds.), pp. 1 – 34, Academic, New York.

    Google Scholar 

  • Mackie, E. B., Brown, K. N., Lam, J., and Costerton, J. W., 1979, Morphological stabilization of capsules of Group B Streptococci, types la, lb, II and III, with specific antibody, J. Bacteriol. 138: 609 – 617.

    PubMed  CAS  Google Scholar 

  • Macnab, R. M., 1979, How do flagella propel bacteria?, Trends Biochem. Sci. 4: N10 – N13.

    CAS  Google Scholar 

  • Maier, S., and Murray, R. G. E., 1965, The fine structure of Thioplaca ingricaand a comparison with Beggiatoa, Can. J. Microbiol. 11: 645 – 656.

    PubMed  CAS  Google Scholar 

  • Maniloff, J., 1983, Evolution of wall-less prokaryotes, Annu. Rev. Microbiol. 37: 477 – 499.

    PubMed  CAS  Google Scholar 

  • Marty-Mazars, D., Horiuchi, D., Tai, P. C., and Davis, B. D., 1983, Proteins of ribosome-bearing and free- membrane domains in Bacillus subtilis, J. Bacteriol. 154: 1381 – 1388.

    PubMed  CAS  Google Scholar 

  • Masuda, N., Ellen, R. P., and Grove, D. A., 1981, Purification and characterization of surface fibrils from taxonomically typical Actinomyces viscosusWVU 627,. Bacteriol. 147: 1095 – 1104.

    CAS  Google Scholar 

  • Matsuura, S., Shioi, J.-I., Imae, Y., and Iida, S., 1979, Characterization of Bacillus subtilismotile system driven by an artifically created proton motive force, J. Bacteriol. 140: 28 – 36.

    PubMed  CAS  Google Scholar 

  • McMichael, J. C., and Ou, J. T., 1979, Structure of common pili from Escherichia coli, J. Bacteriol. 138:969– 975.

    Google Scholar 

  • McQuillen, K., 1965, The physical Organization of nucleic acid and protein synthesis, Symp. Soc. Gen. Microbiol. 15: 134 – 185.

    CAS  Google Scholar 

  • Mooi, F. R., Wijfjes, A., and de Graaf, F. K., 1983, Identification and characterization of precursors in the biosynthesis of the K88ab fimbria of Escherichia coli, J. Bacteriol. 154: 41 – 49.

    PubMed  CAS  Google Scholar 

  • Moore, D., Sowa, B. A., and Ippen-Ihler, K., 1981, The effect of tramutations on the synthesis of the F-pilin membrane polypeptide, Mol. Gen. Genet. 184: 260 – 264.

    PubMed  CAS  Google Scholar 

  • Morrison, R. B., and McCapra, J., 1961, Flagellar changes in Escherichia coliinduced by the temperature of the environment, Nature (Lond.) 192: 774 – 776.

    Google Scholar 

  • Mühlradt, P. F., and Golecki, J. R., 1975, Asymmetrical distribution and artificial reorientation of lipopolysac- charide in the outer membrane bilayer of Salmonella typhimurium, Eur. J. Biochem. 51: 343 – 352.

    PubMed  Google Scholar 

  • Murray, R. G. E., 1978, Form and function. I. Bacteria, in: Essays in Microbiology(J. R. Norris and M. H. Richmond, eds.), pp. 2/1–2/31, Wiley, New York.

    Google Scholar 

  • Murray, R. G. E., and Watson, S. W., 1965, Structure of Nitrosocystis oceanusand comparison with Nitrosomonasand Nitrobacter, J. Bacteriol. 89: 1594 – 1609.

    PubMed  CAS  Google Scholar 

  • Murray, R. G. E., Hall, M., and Thompson, B. G., 1982, Cell division in Deinococcus radiodurans, Proc. Can. Soc. Microbiol. MS6: 104.

    Google Scholar 

  • Myers, W. F., Baca, O. G., and Wisseman, C. L., Jr., 1980, Genome size of the rickettsia Coxiella burnetii, J. Bacteriol. 144: 460 – 461.

    PubMed  CAS  Google Scholar 

  • Nanninga, N., 1971, The mesosome of Bacillus subtilisas affected by chemical and physical fixation, J. Cell Biol. 48: 219 – 224.

    PubMed  CAS  Google Scholar 

  • Nicolson, G. L., and Schmidt, G. L., 1971, Structure of the Chromatiumsulfur particle and its protein membrane, J. Bacteriol. 105: 1142 – 1148.

    PubMed  CAS  Google Scholar 

  • Niederman, R. A., and Gibson, K. D., 1978, Isolation and physicochemical properties of membranes from purple photosynthetic bacteria, in: The Photosynthetic Bacteria( R. Clayton and W. Sistrom, eds.), pp. 78 – 118, Plenum, New York.

    Google Scholar 

  • Nogami, T., and Mizushima, S., 1983, Outer membrane porins are important in maintenance of the surface structure of Escherichia colicells, J. Bacteriol. 156: 402 – 408.

    PubMed  CAS  Google Scholar 

  • Oelze, J., and Drews, G., 1983, Membranes of phototrophic bacteria, in: Organization of Prokaryotic Cell Membranes, Vol. II ( B. K. Ghosh, ed.) pp. 131 – 195, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Pettijohn, D. E., 1976, Prokaryotic DNA in nucleoid structure, Crit. Rev. Biochem. 4: 175 – 202.

    CAS  Google Scholar 

  • Pfennig, N., 1977, Phototrophic green and purple bacteria: A comparative systematic survey, Annu. Rev. Microbiol. 31: 225 – 274.

    Google Scholar 

  • Pflug, H. D., and Jaeschke-Boyer, H., 1979, Combined structural and chemical analysis of 3,800-million-year- old microfossils, Nature (Lond.) 280: 483 – 486.

    CAS  Google Scholar 

  • Pierce, D., and Cloud, P., 1979, New microbial fossils from 1.3 billion-year-old rock of Eastern California, Geomicrobiol. J. 1: 295 – 309.

    Google Scholar 

  • Poindexter, J. S., and Hagenzieker, J. G., 1981, Constriction and separation during cell division in caulobacters, Can. J. Microbiol. 27: 704 – 719.

    PubMed  CAS  Google Scholar 

  • Preston, N. W., and Maitland, H. B., 1952, The influence of temperature on the motility of Pasteurella pseudotuberculosis, J. Gen. Microbiol. 7: 117 – 128.

    PubMed  CAS  Google Scholar 

  • Purcell, E. M., 1977, Life at low Reynolds number, Am. J. Phys. 45: 3 – 11.

    Google Scholar 

  • Remsen, C. C., 1982, Structural attributes of membranous organelles in bacteria, Int. Rev. Cytol. 76: 195 – 223.

    PubMed  CAS  Google Scholar 

  • Reusch, R. N., and Sadoff, H. L., 1983a, Novel lipid components of the Azotobacter vinelandiicyst membrane, Nature (Lond.) 302: 268 – 270.

    CAS  Google Scholar 

  • Reusch, R. N., and Sadoff, H. L., 19836, D-(-)-poly-β-hydroxybutyrate in membranes of genetically competent bacteria, J. Bacteriol. 156:778–788.

    Google Scholar 

  • Salton, M. R. J., 1963, The relationship between the nature of the cell wall and the Gram stain, J. Gen. Microbiol. 30: 223 – 235.

    PubMed  CAS  Google Scholar 

  • Salton, M. R. J., and Owen, P., 1976, Bacterial membrane structure, Annu. Rev. Microbiol. 30: 451 – 482.

    PubMed  CAS  Google Scholar 

  • Sargent, M. G., Bennett, M. F., and Burdett, I. D. J., 1983, Identification of specific restriction fragments associated with a membrane subparticle from Bacillus subtilis, J. Bacteriol. 154: 1389 – 1396.

    PubMed  CAS  Google Scholar 

  • Sauer, F. D., Erfle, J. D., and Mahadevan, S., 1980, Methane production by the membranous fraction of Methanobacterium thermoautotrophicum, Biochem. J. 190: 177 – 182.

    PubMed  CAS  Google Scholar 

  • Scherer, P. A., and Bochem, H.-P., 1983, Ultrastructural investigation of 12 Methanosarcinaeand related species grown on methanol for occurrence of polyphosphate-like inclusions, Can. J. Microbiol. 29: 1190 – 1199.

    CAS  Google Scholar 

  • Schmidt, J. M., 1966, Observations on the adsorption of caulobacter bacteriophages containing ribonucleic acid, J. Gen. Microbiol. 45: 347 – 353.

    PubMed  CAS  Google Scholar 

  • Schmitt, R., Bamberger, I., Acker, G., and Mayer, F., 1974a, Fine structure analysis of the complex flagella of Rhizobium lupiniH13-3, Arch. Microbiol. 100: 145 – 162.

    Google Scholar 

  • Schmitt, R., Raska, I., and Mayer, F., 19746, Plain and complex flagella of Pseudomonas rhodos: Analysis of fine structure and composition, J. Bacteriol. 117:844–854.

    Google Scholar 

  • Scott, C. C. L., and Finnerty, W. R., 1976, Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacterspecies HOl-N, J. Bacteriol. 127: 481 – 489.

    PubMed  CAS  Google Scholar 

  • Shioi, J.-I., Matsuura, S., and Imae, Y., 1980, Quantitative measurements of proton motive force and motility in Bacillus subtilis, J. Bacteriol. 144: 891 – 897.

    PubMed  CAS  Google Scholar 

  • Shiozawa, J., Welte, W., Hodapp, N., and Drews, G., 1982, Studies on size and composition of isolated light- harvesting B800–850 pigment-protein complex of Rhodopseudomonas capsulata, Arch. Biochem. Bio- phys. 213: 473 – 485.

    CAS  Google Scholar 

  • Shively, J. M., 1974, Inclusion bodies of prokaryotes, Annu. Rev. Microbiol. 28: 167 – 187.

    PubMed  CAS  Google Scholar 

  • Shively, J. M., Ball, F. L., Brown, D. H., and Saunders, R. E., 1973, Functional organelles in prokaryotes: Polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus, Science 182: 584 – 586.

    PubMed  CAS  Google Scholar 

  • Shockman, G. D., and Barrett, J. F., 1983, Structure, function and assembly of cell walls of gram-positive bacteria, Annu. Rev. Microbiol. 37: 501 – 527.

    PubMed  CAS  Google Scholar 

  • Silverman, M., and Simon, M. I., 1977, Bacterial flagella, Annu. Rev. Microbiol. 31: 397 – 419.

    PubMed  CAS  Google Scholar 

  • Simoni, R. D., and Postma, P. W., 1975, The energetics of bacterial active transport, Annu. Rev. Biochem. 44: 522 – 554.

    Google Scholar 

  • Sinden, R. R., and Pettijohn, D. E., 1981, Chromosomes in living Escherichia colicells are segregated into domains of supercoiling, Proc. Natl. Acad. Sci. USA 78: 224 – 228.

    PubMed  CAS  Google Scholar 

  • Sleytr, U. B., 1981, Morphopoietic and functional aspects of regular protein membranes present on prokaryotic cell walls, in: Cell Biology Monographs, Vol. 8, Cytomorphogenesis in Plants( O. Kiermayer, ed.), pp. 1 – 26, Springer-Verlag, New York.

    Google Scholar 

  • Sleytr, U. B., and Glauert, A. M., 1982, Bacterial cell walls and membranes, in: Electron Microscopy of Proteins, Vol. 3 ( J. R. Harris, ed), pp. 41 – 76, Academic, London.

    Google Scholar 

  • Sleytr, U. B., and Messner, P., 1983, Crystalline surface layers on bacteria, Annu. Rev. Microbiol. 37: 311 – 339.

    PubMed  CAS  Google Scholar 

  • Sprague, S. G., Staehelin, L. A., DiBartolomeis, J., and Fuller, R. C., 1981 a, Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus, J. Bacteriol. 147: 1021 – 1031.

    CAS  Google Scholar 

  • Sprague, S. G., Staehelin, L. A., and Fuller, R. C., 1981 b, Semiaerobic induction of bacteriochlorophyll synthesis in the green bacterium Chloroflexus aurantiacus, J. Bacteriol. 147:1032–1039.

    Google Scholar 

  • Sprott, G. D., Sowden, L. C., Colvin, J. R., Jarrell, K. F., and Beveridge, T. J., 1984, Methanogenesis in the absence of intracytoplasmic membranes, Can. J. Microbiol. 30: 594 – 604.

    CAS  Google Scholar 

  • Staehelin, L. A., Goelecki, J. R., Fuller, R. C., Drews, G., 1978, Visualization of the supramolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus, Arch. Microbiol. 119: 269 – 277.

    Google Scholar 

  • Stanier, R. Y., and Cohen-Bazire, G. 1977. Phototrophic prokaryotes: The cyanobacteria, Annu. Rev. Microbiol. 31: 225 – 274.

    PubMed  CAS  Google Scholar 

  • Stetter, K. O., Konig, H., and Stackebrandt, E., 1983, Pyrodictiumgen. nov., a new genus of submarine discshaped sulfur-reducing archaebacterium growing optimally at 105°C, Syst. Appl. Microbiol. 4: 535 – 551.

    CAS  Google Scholar 

  • Stewart, M., and Beveridge, T. J., 1980, Structure of the regular surface layer of Sporosarcina ureae, J. Bacteriol. 142: 302 – 309.

    PubMed  CAS  Google Scholar 

  • Stock, J. B., Rauch, B., and Roseman, S., 1977, Periplasmic space in Salmonella typhimuriumand Escherichia coli, J. Biol. Chem. 252: 7850 – 7861.

    PubMed  CAS  Google Scholar 

  • Stoeckenius, W., 1981, Walsby’s square bacterium: Fine structure of an orthogonal procaryote, J. Bacteriol. 148: 352 – 360.

    PubMed  CAS  Google Scholar 

  • Strohl, W. R., and Larkin, J. M., 1978, Cell division and trichome breakage in Beggiatoa, Curr. Microbiol. 1: 151 – 155.

    Google Scholar 

  • Suzuki, H., Nishimura, Y., Yasuda, S., Nishimura, A., Yamada, H., and Hirota, Y., 1978, Murein-lipoprotein of Escherichia coli: A protein involved with the stabilization of bacterial cell envelope, Mol. Gen. Genet. 167: 1 – 9.

    PubMed  CAS  Google Scholar 

  • Szmelcman, S., and Hofnung, M., 1975, Maltose transport in Escherichia coliK-12: Involvement of the bacteriophage lambda receptor, J. Bacteriol. 124: 112 – 118.

    PubMed  CAS  Google Scholar 

  • Tempest, D. W., 1969, Quantitative relationships between inorganic cations and anionic polymers in growing bacteria, Proc. Gen. Soc. Microbiol. 19; 87 – 111.

    Google Scholar 

  • Tempest, D. W., 1973, Environmental effects on bacterial wall synthesis, Antonie van Leeuwenhoek J. Microbiol. Serol. 39: 652 – 653.

    CAS  Google Scholar 

  • Trentini, W. C., 1978, Biology of the genus Caryophanon, Annu. Rev. Microbiol. 32: 123 – 141.

    CAS  Google Scholar 

  • Trentini, W. C., and Murray, R. G. E., 1975, Ultrastructural effects of lysozymes on the cell wall of Caryophanon latum, Can. J. Microbiol. 21: 164 – 172.

    PubMed  CAS  Google Scholar 

  • Tweedy, J. M., Park, R. W. A., and Hodgkiss, W., 1968, Evidence for the presence of fimbriae (pili) on Vibriospecies, J. Gen. Microbiol. 51: 235 – 244.

    PubMed  CAS  Google Scholar 

  • Varga, A. R., and Staehelin, L. A., 1983, Spatial differentiation in photosynthetic and non-photosynthetic membranes of Rhodopseudomonas palustris, J. Bacteriol. 154: 1414 – 1430.

    PubMed  CAS  Google Scholar 

  • Verwer, R. W. H., Nanninga, N., Keck, W., and Schwarz, U., 1978, Arrangement of glycan chains in the sacculus of Escherichia coli, J. Bacteriol. 136: 723 – 729.

    PubMed  CAS  Google Scholar 

  • Wakim, B., Golecki, J. R., and Oelze, J., 1978, The unusual mode of altering the cellular membrane content by Rhodospirillum tenue, FEMS Microbiol. Lett. 4: 199 – 201.

    CAS  Google Scholar 

  • Walsby, A. E., 1972, Structure and function of gas vacuoles, Bacteriol. Rev. 36: 1 – 32.

    PubMed  CAS  Google Scholar 

  • Watson, S. W., and Waterbury, J. B., 1971, Characteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilisnov. gen. nov. sp. and Nitrococcus mobilisnov. gen. nov. sp. Arch. Microbiol. 77: 203 – 230.

    Google Scholar 

  • Watson, S. W., Graham, L. B., Remsen, C. C., and Valois, F. W., 1971, A lobular, ammonia-oxidizing bacterium, Nitrosolobus multiformis, nov. gen. nov. sp., Arch. Microbiol. 76: 183 – 203.

    CAS  Google Scholar 

  • Watts, T. H., Worobec, E. A., and Paranchych, W., 1982, Identification of pilin pools in the membranes of Pseudomonas aeruginosa, J. Bacteriol. 152: 687 – 691.

    PubMed  CAS  Google Scholar 

  • Wayne, R., and Neilands, J. B., 1975, Evidence for common binding sites for ferrichrome compounds and bacteriophage ф80 in the cell envelope of Escherichia coli, J. Bacteriol. 121: 497 – 503.

    PubMed  CAS  Google Scholar 

  • Westphal, K., Bock, E., Cannon, E., and Shively, J. M., 1979, Deoxyribonucleic acid in Nitrobactercarboxysomes, J. Bacteriol. 140: 285 – 288.

    PubMed  CAS  Google Scholar 

  • White, D. A., Lennarz, W. J., and Schnaitman, C. A., 1972, Distribution of lipids in the wall and cytoplasmic membrane of the cell envelope of Escherichia coli, J. Bacteriol. 109: 686 – 690.

    PubMed  CAS  Google Scholar 

  • Whitfield, J. F., and Murray, R. G. E., 1976, The effects of the ionic environment on the chromatin structures of bacteria, Can. J. Microbiol. 2: 245 – 260.

    Google Scholar 

  • Wildgruber, G., Thomm, M., Konig, H., Ober, K. Ricchiuto, T., and Stetter, K. O., 1982, Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the methanoplanaceae, Arch. Microbiol. 132: 31 – 36.

    CAS  Google Scholar 

  • Willetts, N. S., 1975, The genetics of conjugation, in: Microbial Drug Resistance( S. Mitsuhashi and H.Hashimoto, eds.), University Park Press, Baltimore.

    Google Scholar 

  • Willison, J. H. M., Easterbrook, K. B., and Coombs, R. W., 1977, The attachment of bacterial spinae, Can. J. Microbiol. 23: 258 – 266.

    PubMed  CAS  Google Scholar 

  • Wistreich, G. A., and Baker, R. F., 1971, The presence of fimbriae (pili) in three species of Neisseria, J. Gen. Microbiol. 65: 167 – 173.

    PubMed  CAS  Google Scholar 

  • Woldringh, C. L., and Nanninga, N., 1976, Organization of the nucleoplasm in Escherichia colivisualized by phase-contrast light microscopy, freeze-fracturing, and thin sectioning, J. Bacteriol. 127: 1455 – 1464.

    PubMed  CAS  Google Scholar 

  • Worcester, D. L., Easterbrook, K. B., Fowler, A. E., and Burge, R. E., 1981, Structure of bacterial spinae, Proc. Can. Soc. Microbiol. C3: 86.

    Google Scholar 

  • Zeikus, J. G., and Bowen, V. G., 1975a, Comparative ultrastructure of methanogenic bacteria, Can. J. Microbiol. 21: 121 – 129.

    CAS  Google Scholar 

  • Zeikus, J. G., and Bowen, V. G., 19756, Fine structure of Methanospir ilium hungatei, J. Bacteriol. 121:373–380.

    Google Scholar 

  • Zeikus, J. G., and Wolfe, R. S., 1973, Fine structure of Methanobacterium thermoautotrophicum: Effect of growth temperature on morphology and ultrastructure, J. Bacteriol. 113: 461 – 467.

    PubMed  CAS  Google Scholar 

  • Zychlinsky, E., and Matin, A., 1983, Effect of starvation on cytoplasmic pH, proton motive force, and viability of an acidophilic bacterium, Thiobacillus acidophilus, J. Bacteriol. 153: 371 – 374.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Beveridge, T.J. (1989). The Structure of Bacteria. In: Poindexter, J.S., Leadbetter, E.R. (eds) Bacteria in Nature. Bacteria in Nature, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0803-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0803-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8090-3

  • Online ISBN: 978-1-4613-0803-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics