The Striatum as a Temporary Memory Store

  • Roberto A. Prado-Alcalá
Part of the Critical Issues in Neuropsychology book series (CINP)


The search for the mechanisms involved in memory storage has yielded an enormous amount of experimental data. To date, however, we are far from understanding how the nervous system integrates the relevant information derived from experience, and how that information is channeled to effector systems when the same, or a similar, experience occurs.


Caudate Nucleus Passive Avoidance Kainic Acid Retrograde Amnesia Experimental Neurology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bermúdez-Rattoni, F., Mujica-González, M., & Prado-Alcalá, R. A. (1986). Is cholinergic activity of the striatum involved in the acquisition of positively-motivated behaviors? Pharmacology, Biochemistry and Behavior, 24, 715–719.CrossRefGoogle Scholar
  2. Cobos Zapiain, G., & Prado-Alcalá, R. A. (1986). Aplicación de picrotoxina en la substancia nigra reticulada: Efectos sobre la memoria de largo plazo, en una tarea sobreentrenada, XXIX Congreso Nacional de Ciencias Fisiologicas, Mexico.Google Scholar
  3. Divac, I., & Oberg, R. G. E. (1979). The neostriatum. Oxford: Pergamon Press.Google Scholar
  4. Dunnett, S. B., & Iversen, S. D. (1981). Learning impairments following selective kainic acid-induced lesions within the neostriatum of rats. Behavioral Brain Research, 2, 189–209.CrossRefGoogle Scholar
  5. Giordano, M., & Prado-Alcalá, R. A. (1986). Retrograde amnesia induced by post-trial injec-tion of atropine into the caudate-putamen. Protective effect of the negative reinforcer. Pharmacology, Biochemistry and Behavior, 24, 905–909.CrossRefGoogle Scholar
  6. Glick, S. D., & Greenstein, S. (1973). Comparative learning and memory deficits following hippocampal and caudate lesions in mice. Journal of Comparative and Physiological Psychology, 82, 188–194.PubMedCrossRefGoogle Scholar
  7. Glick, S. D., Marsanico, R. G., & Greenstein, S. (1974). Differential recovery of function following caudate, hippocampal, and septal lesions in mice. Journal of Comparative and Physiological Psychology, 86, 787–792.PubMedCrossRefGoogle Scholar
  8. Haycock, J. W., Deadwyler, S. A., Sideroff, S. I., & McGaugh, J. L. (1973). Retrograde amnesia and cholinergic systems in the caudate-putamen complex and dorsal hippocampus of the rat. Experimental Neurology, 41, 201–213.PubMedCrossRefGoogle Scholar
  9. Kim, H.-J., & Routtenberg, A. (1976a). Retention deficits following post-trial dopamine injection in rat neostriatum. Society for Neuroscience Abstracts, 2, 631.Google Scholar
  10. Kim, H.-J., & Routtenberg, A. (1976b). Retention disruption following post-trial picrotoxin injection into the substantia nigra. Brain Research, 113, 620–625.Google Scholar
  11. Kirkby, R. J., & Kimble, D. P. (1968). Avoidance and escape behavior following striatal lesions in the rat. Experimental Neurology, 20, 215–227.PubMedCrossRefGoogle Scholar
  12. Le Piane, F., & Phillips, A. G. (1978). Differential effects of electrical stimulation of amygdala, caudate-putamen or substantia nigra pars compacta on taste aversion and passive avoidance in rats. Physiology and Behavior, 21, 979–985.CrossRefGoogle Scholar
  13. Miller, R. (1981). Meaning andpurpose in the intact brain. Oxford: Oxford University Press.Google Scholar
  14. Mitcham, J. C., & Thomas, R. K. (1972). Effects of substantia nigra and caudate nucleus lesions on avoidance learning in rats. Journal of Comparative and Physiological Psychology, 81, 101–107.PubMedCrossRefGoogle Scholar
  15. Neill, D. B., & Grossman, P. S. (1970). Behavioral effects of lesions or cholinergic blockade of dorsal and ventral caudate of rats. Journal of Comparative and Physiological Psychology, 71, 311–317.PubMedCrossRefGoogle Scholar
  16. Olmstead, C. E., & Villablanca, J. R. (1980). Effects of caudate or frontal cortex ablations in cats and kittens: Passive avoidance. Experimental Neurology, 68, 335–345.PubMedCrossRefGoogle Scholar
  17. Pérez-Ruiz, C., & Prado-Alcalâ, R. A. (1986). Differential effects of lidocaine injections into the striatum on short-and long-term retention of passive avoidance in overtrained rats. Society for Neuroscience Abstracts, 12, 714.Google Scholar
  18. Phillips, A. G., & Clouston, R. (1978). Disruption of one-trial appetitive learning and passive avoidance following stimulation of the substantia nigra pars compacta. Behavioral Biology, 23, 388–394.PubMedCrossRefGoogle Scholar
  19. Polgar, S., Sanberg, P. R., & Kirkby, R. J. (1981). Is the striatum involved in passive avoidance behavior? A commentary. Physiological Psychology, 9, 354–358.Google Scholar
  20. Prado-Alcalá, R. A. (1985). Is cholinergic activity of the caudate nucleus involved in memory? Life Sciences, 37, 2135–2142.PubMedCrossRefGoogle Scholar
  21. Prado-Alcalá, R. A., Bernuidez-Rattoni, F., Velazquez-Martinez, D., & Bacha, M. G. (1978). Cholinergic blockade of the caudate nucleus and spatial alternation performance in rats: Overtraining-induced protection against behavioral deficits. Life Sciences, 23, 889–896.PubMedCrossRefGoogle Scholar
  22. Prado-Alcalá, R. A., Cepeda, G., Verduzco, L., Jimenez, A., & Vargas-Ortega, E. (1984). Effects of cholinergic stimulation of the caudate nucleus on active avoidance. Neuroscience Letters, 51, 31–36.PubMedCrossRefGoogle Scholar
  23. Prado-Alcalá, R. A., & Cobos-Zapiain, G. G. (1977). Learning deficits induced by cholinergic blockade of the caudate nucleus as a function of experience. Brain Research, 138, 190–196.PubMedCrossRefGoogle Scholar
  24. Prado-Alcalá, R. A., & Cobos Zapiain, G. G. (1979). Interference with caudate nucleus activity by potassium chloride. Evidence for a “moving” engram. Brain Research, 172, 577–583.PubMedCrossRefGoogle Scholar
  25. Prado-Alcalá, R. A., Cruz-Morales, S. E., & Lopez-Miro, F. A. (1980). Differential effects of cholinergic blockade of anterior and posterior caudate nucleus on avoidance behaviors. Neuroscience Letters 18, 339–345.PubMedCrossRefGoogle Scholar
  26. Prado-Alcalá, R. A., Fernandez-Samblancat, M., & Solodkin-Herrera, M. (1985). Injections of atropine into the caudate nucleus impair the acquisition and the maintenance of passive avoidance. Pharmacology, Biochemistry and Behavior, 22, 243–247.CrossRefGoogle Scholar
  27. Prado-Alcalá, R. A., Grinberg, Z. J., Alvarez-Leefmans, F. J., & Brust-Carmona, H. (1973). Suppression of motor conditioning by the injection of 3M KC1 in the caudate nuclei of cats. Physiology and Behavior, 10, 59–64.PubMedCrossRefGoogle Scholar
  28. Prado-Alcalá, R. A., Grinberg, Z. J., Alvarez-Leefmans, F. J., Gomez, A., Singer, S., & Brust-Carmona, H. (1972). A possible caudate-cholinergic mechanism in two instrumental conditioned responses. Psychopharmacologia (Berlin), 25, 339–346.CrossRefGoogle Scholar
  29. Prado-Alcalá, R. A., Grinberg, Z. J., Arditii, Z. L., Garcia, M. M., Prieto, H. G., & Brust-Carmona, H. (1975). Learning deficits produced by chronic and reversible lesions of the corpus striatum in rats. Physiology and Behavior, 15, 283–287.PubMedCrossRefGoogle Scholar
  30. Prado-Alcalá, R. A., Kaufmann, P., & Moscona, R. (1980). Scopolamine and KC1 injections into the caudate-putamen. Overtraining-induced protection against deficits of learning. Pharmacology, Biochemistry and Behavior, 12, 249–253.CrossRefGoogle Scholar
  31. Prado-Alcalá, R. A., Signoret, L., & Figueroa, M. (1981). Time-dependent retention deficits induced by post-training injections of atropine into the caudate nucleus. Pharmacology, Biochemistry and Behavior, 15, 633–636.CrossRefGoogle Scholar
  32. Prado-Alcalá, R. A., Signoret-Edward, L., Figueroa, M., & Barrientos, M. A. (1984). Post-trial injection of atropine into the caudate nucleus interferes with long-term, but not with short-term retention of passive avoidance. Behavioral and Neural Biology, 42, 81–84.PubMedCrossRefGoogle Scholar
  33. Rivas-Arancibia, S., & Prado-Alcalá, R. A. (1986). Nbcleo caudado y aprendizaje. XXIV. Interaccion entre los sistemas dopaminérgico y colinérgico enprocesos de memoria. XXIX Congreso Nacional de Ciencias Fisiologicas, México.Google Scholar
  34. Salado-Castillo, R., & Prado-Alcalá, R. A. (1987). Effects of picrotoxin injections into different regions of the striatum on retention of passive avoidance. Society for Neuroscience Abstracts, 13, 657.Google Scholar
  35. Sanberg, P. R., Lehmann, J., & Fibiger, H. C. (1978). Impaired learning and memory after kainic acid lesions of the striatum: A behavioral model of Huntington’s disease. Brain Research, 149, 546–551.PubMedCrossRefGoogle Scholar
  36. Sanberg, P. R., Pisa, M., & Fibiger, H. C. (1979). Avoidance, operant and locomotor behavior in rats with neostriatal injections of kainic acid. Pharmacology, Biochemistry and Behavior, 10, 137–144.CrossRefGoogle Scholar
  37. Stabuli, U., & Huston, J. P. (1978). Effects of post-trial reinforcing vs. subreinforcing stimulation of the substantia nigra on passive avoidance learning. BrainResearch Bulletin, 3, 519–524.Google Scholar
  38. Winocur, G. J. (1974). Functional dissociation within the caudate nucleus of rats. Journal of Comparative and Physiological Psychology, 86, 432–439.PubMedCrossRefGoogle Scholar
  39. Wyers, E. J., & Deadwyler, S. A. (1971). Duration and nature of retrograde amnesia produced by stimulation of caudate nucleus. Physiology and Behavior, 6, 97–103.PubMedCrossRefGoogle Scholar
  40. Wyers, E. J., Deadwyler, S. A., Hirasuna, N., & Montgomery, D. (1973). Passive avoidance retention and caudate stimulation. Physiology and Behavior, 11, 809–819.PubMedCrossRefGoogle Scholar
  41. Wyers, E., J., Peeke, H. V. S., Elliston, J. S., & Herz, M. J. (1968). Retroactive impairment of passive avoidance learning by stimulation of the caudate nucleus. Experimental Neurology, 22, 350–366.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Roberto A. Prado-Alcalá
    • 1
  1. 1.Department of Physiology, Faculty of MedicineNational University of MexicoMexico D.F.Mexico

Personalised recommendations