Skip to main content

Consistent Quantum Mechanics of Chiral p-Forms

  • Chapter
Quantum Mechanics of Fundamental Systems 2

Abstract

p-form gauge potentials naturally arise in theories of fundamental extended objects. A p-form potential bears to a (p − 1)-dimensional object the same relation that the ordinary electromagnetic potential bears to a charged particle. It couples to the tangent of the object’s history [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kalb and P. Ramond, Phys. Rev. D 9, 2273 (1974);

    Article  ADS  Google Scholar 

  2. P. G. O. Freund and R. I. Nepomechie, Nucl. Phys. B 199, 482 (1982);

    Article  ADS  Google Scholar 

  3. C. Teitelboim, Phys. Lett. 167B, 63, 69 (1986);

    MathSciNet  ADS  Google Scholar 

  4. M. Henneaux and C. Teitelboim, Found. Phys. 16, 593 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  5. W. Nahm, Nucl. Phys. B 135, 149 (1978);

    Article  ADS  Google Scholar 

  6. M. B. Green and J. H. Schwarz, Phys. Lett. 109B, 444 (1982);

    ADS  Google Scholar 

  7. N. Marcus and J. H. Schwarz, Phys. Lett. 115B, 111 (1982).

    MathSciNet  ADS  Google Scholar 

  8. M. Henneaux and C. Teitelboim, Dynamics of chiral (self-dual) p-forms, Phys. Lett. 206B, 650 (1988).

    ADS  Google Scholar 

  9. P. A. M. Dirac, Lectures on Quantum Mechanics, Academic Press, New York, 1964;

    Google Scholar 

  10. P. A. M. Dirac, J. Schwinger, Phys. Rev. 127, 324 (1962);

    Article  MathSciNet  Google Scholar 

  11. C. Teitelboim, Ann. Phys. (N. Y) 79, 542 (1973).

    Article  ADS  Google Scholar 

  12. C. Teitelboim, The Hamiltonian structure of space-time, in General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein (A. Held, ed.), Plenum Press, New York, 1980.

    Google Scholar 

  13. P. A. M. Dirac, Can. J. Math. 2, 129 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Siegel, Nucl. Phys. B 238, 307 (1984).

    Article  ADS  Google Scholar 

  15. D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, Phys. Rev. Lett. 54, 502 (1985);

    Article  MathSciNet  ADS  Google Scholar 

  16. D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, Nucl. Phys. B 256, 253 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  17. L. Brink and M. Henneaux, Principles of String Theory, Chap. 5, Plenum Press, New York, 1988.

    Google Scholar 

  18. M. Henneaux, Phys. Rep. 126, 1 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  19. I. A. Batalin and E. S. Fradkin, Phys. Lett. 122B, 157 (1983);

    MathSciNet  ADS  Google Scholar 

  20. J. Fisch, M. Henneaux, J. Stasheff, and C. Teitelboim, Existence, uniqueness and cohomology of the classical BRST charge with ghosts of ghosts, Commun. Math. Phys. 120, 379 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. R. Floreanini and R. Jackiw, Phys. Rev. Lett. 59, 1873 (1987).

    Article  ADS  Google Scholar 

  22. M. Bernstein and J. Sonnenschein, Phys. Rev. Lett. 69, 1772 (1988). Treatments of the action proposed in Ref. 7 which do not use the Dirac method lead to inconsistent quantization. See C. Imbimbo and A. Schwimmer, Phys. Lett. 193B, 455 (1987);

    Article  ADS  Google Scholar 

  23. J. Labastida and M. Pernici, Nucl. Phys. B297, 557 (1988);

    Article  ADS  Google Scholar 

  24. L. Mezincescu and R. I. Nepomechie, Phys. Rev. D 37, 3067 (1988).

    Article  ADS  Google Scholar 

  25. C. A. P. Galväo and C. Teitelboim, J. Math. Phys. 21, 1863 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Henneaux and C. Teitelboim, Ann. Phys. (NY.) 143, 127 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  27. J. H. Schwarz and P. C. West, Phys. Lett. 126B, 301 (1983);

    MathSciNet  ADS  Google Scholar 

  28. J. H. Schwarz, Nucl. Phys. B 226, 269 (1983).

    Article  ADS  Google Scholar 

  29. L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction to Quantum Theory, Benjamin, Reading, 1980.

    MATH  Google Scholar 

  30. L. D. FaddeevPhys. Lett 145B, 81 (1984).

    MathSciNet  ADS  Google Scholar 

  31. M. B. Green, J. H. Schwarz, and Edward Witten, Superstring Theory, Vol. 1, Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  32. I. A. Batalin and E. S. Fradkin, Riv. Nuovo Cimento 9(10), 1–48 (1986).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Henneaux, M., Teitelboim, C. (1989). Consistent Quantum Mechanics of Chiral p-Forms. In: Teitelboim, C., Zanelli, J. (eds) Quantum Mechanics of Fundamental Systems 2. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0797-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0797-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8087-3

  • Online ISBN: 978-1-4613-0797-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics