Advertisement

On a Global Differential Geometric Approach to the Rational Mechanics of Deformable Media

  • E. Binz
  • D. Socolescu

Abstract

In the past the rational mechanics of deformable media was largely concerned with materials governed by linear constitutive equations. In recent years, the theory has expanded considerably towards covering materials for which the constitutive equations are inherently nonlinear, and/or whose mechanical properties resemble in some respects those of a fluid and in others those of a solid (cf[Tr,No],[Le,Fi]).

Keywords

Principal Bundle Force Density Soap Bubble Hodge Decomposition Deformable Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ba]
    A. Bastiani: Applications difffèrentiables et variètès difffèrentiables de dimension infinie, J. Anal. Math., 13, 1 – 114, 1964MathSciNetMATHCrossRefGoogle Scholar
  2. [Bi,l]
    E. Binz: Two natural metrics and their covariant derivatives on a manifold of embeddings, Mh. Math., 89, 275 – 288, 1980MathSciNetMATHGoogle Scholar
  3. [Bi,2]
    E. Binz: The description of ℝn-valued one forms relative to an embedding, Mannheimer Manuskripte No. 74, Universität Mannheim, 1987Google Scholar
  4. [Bi,3]
    E. Binz: One forms on E(M,ℝn) with integral representation, Mannheimer Manuskripte No. 79, Universität Mannheim, 1988Google Scholar
  5. [Bi,4]
    E. Binz: On the notion of the stress tensor associated with ℝn- invariant constitutive laws admitting integral representations, (to appear in Reports on Mathematical Physics), 1988Google Scholar
  6. E. Binz: Viscosity and volume active pressure, Mannheimer Manuskripte No. 82, Universität Mannheim, 1988Google Scholar
  7. E. Binz: Natural Hamiltonian systems on spaces of embeddings, Proceedings of the XV international conference on differential geometric methods in theoretical physics, ed. H.D. Doebner, J.D. Hennig, World Scientific, Singapore, New Jersey, Hong Kong, 1987Google Scholar
  8. E. Binz, H.R. Fischer: The manifold of embeddings of a closed manifold, Lecture Notes Phys., 139, Springer-Verlag, Berlin, 1981Google Scholar
  9. Frölicher, Kriegl: Linear spaces and differentiation theory, John Wiley, Chichester England, 1988Google Scholar
  10. W. Greub, S. Halperin, J. Vanstone: Connections, Curvature and Cohomology, I, II, Acad. Press, New York, 1972–73Google Scholar
  11. J. Gutknecht: Die CΓ∞ - Struktur auf der Diffeomorphismen-gruppe einer kompakten Mannigfaltigkeit, Diss. ETH 5879, Zürich, 1977Google Scholar
  12. M. Golubitski, V. Guillemin: Stable mappings and their singularities, Graduate Texts of Mathematics, Springer GTM 14, Berlin, 1973Google Scholar
  13. E. Hellinger: Die allgemeinen Ansätze der Mechanik der Kontinua, Enzykl. Math. Wiss. 4/4, 1914Google Scholar
  14. M.W. Hirsch: Differential Topology, Springer GTM, Berlin, 1976Google Scholar
  15. W. Klingenberg: Riemannian Geometry, De Gruyter Studies in Math., Berlin, 1982Google Scholar
  16. M. J. Leitman, G. M. C. Fisher: The linear theory of visco-elasticity, Handbuch der Physik, VI a/3, Editors C. Truesdell, S. Flügge, Springer-Verlag, Berlin, 1965Google Scholar
  17. P. Michor: Manifolds of differentiate mappings, Shiva Math. Series, Shiva Publ., Kent, UK, 1980Google Scholar
  18. Th. Schnyder-Peter: Zur Struktur der Immersionen einer Mannigfaltigkeit in einem euklidischen Raum, Universität Zürich, 1983Google Scholar
  19. C. Truesdell, W. Noll: The non-linear field theories of mechanics, Handbuch der Physik, III/3, Editors C. Truesdell, S. Flügge, Springer-Verlag, Berlin, 1973Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • E. Binz
    • 1
  • D. Socolescu
    • 2
  1. 1.Fakultät für Mathematik und InformatikUniversität Mannheim Seminargebäude A. 5Germany
  2. 2.Fachbereich MathematikUniversität Kaiserslautern Erwin-Schrödinger-StraßeKaiserslauternGermany

Personalised recommendations