Skip to main content

Harmonic Oscillator Representation in the Theory of Scattering and Reactions

  • Chapter
Symmetries in Science III
  • 210 Accesses

Abstract

The problem is discussed to solve the Schrödinger equation for a particle in a potential well V in terms of the harmonic oscillator representation. The matrix of the free-motion Hamiltonian in the oscillator basis is of a simple three-diagonal form. Explicit expressions for the matrix eigenvectors corresponding to both regular and irregular solutions for free motion at an arbitrary energy E are discussed. The formulae obtained make it possible to calculate the energies of the bound and resonant states, the scattering phase andS-matrix elements. This approach is extended to “true” many body scattering. As examples of application of this method the160(γ,n) reaction and 0+ -states in 12 C = 3a system are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. E. Harris, Phys. Rev. Lett.,19: 173 (1967).

    Article  ADS  Google Scholar 

  2. E. J. Heller and H. A. Yamani, Phys. Rev.A9: 1201 (1974).

    ADS  Google Scholar 

  3. H. A. Yamani and L. Fishman, J. Math. Phys.16: 410 (1975).

    Article  ADS  Google Scholar 

  4. E. J. Heller, Phys. Rev.A12: 1222 (1975).

    ADS  Google Scholar 

  5. H. A. Yamani and W. P. Reinhardt, Phys. Rev.A11: 1144 (1975).

    ADS  Google Scholar 

  6. J. T. Broad, Phys. Rev.A18: 1012 (1978).

    MathSciNet  ADS  Google Scholar 

  7. I. P. Okhrimenko and G. F. Filippov, Yad. Fiz. 32: 933 (1980).

    Google Scholar 

  8. G. F. Filippov, Yad. Fiz.33: 928 (1981).

    Google Scholar 

  9. G. F. Filippov, V. S. Vasilevsky and A. V. Nesterov, Nucl. Phys.A426: 327 (1984).

    ADS  Google Scholar 

  10. G. F. Filippov, V. S. Vasilevsky, L. L. Chopovsky, Particles and Nuclei,15:1984);16: 349 (1985).

    Google Scholar 

  11. Yu. I. Nechaev and Yu. F. Smirnov, Yad. Fiz.35:1385 (1982); Kinam4:445 (1982);

    Google Scholar 

  12. Yu. F. Smirnov, A. M. Shirokov, Preprint of the Institute of Theoretical Physics, Kiev, 1988.

    Google Scholar 

  13. K. Wildermuth and Y. C. Tang, “Unified Theory of the Nucleus”, Braunschweig, Vieweg Verlag, 1977.

    Google Scholar 

  14. M. Moshinsky, “The Harmonic Oscillator in Modern Physics: From Atoms to Quarks,” Gordon and Breach, New York, London, Paris: Gordon and Breach, (1969).

    Google Scholar 

  15. V. I. Kukulin, V. G. Neudatchin and Yu. F. Smirnov, Particles and Nuclei,10, no. 6: 1236 (1979).

    Google Scholar 

  16. L. M. Kuznetzova, V. I. Kukulin and V. G. Neudstchin, Yad. Fiz. 13:694 (1971).

    Google Scholar 

  17. J. Revai et al., J. Phys. G. 11: 745 (1985).

    Article  ADS  Google Scholar 

  18. A. Messiah, “Quantum Mechanics,” Vol. 1, North-Holland, Amsterdam, (1965).

    Google Scholar 

  19. M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions,” National Bureau of Standard, Applied Mathematics Series 55, (1964).

    Google Scholar 

  20. A. A. Mirolyubov and M. A. Soldatov, “Linear homogeneous difference equations,” Nauka Publishers, Moscow, (1981).

    MATH  Google Scholar 

  21. P. W. Langhoff and W. P. Reinhardt, Chem. Lett.24: 495 (1974).

    Article  ADS  Google Scholar 

  22. W. P. Reinhardt, Comput. Phys. Comm.6: 303 (1973).

    Article  ADS  Google Scholar 

  23. R. L. Jaffe and F. E. Low, Phys. Rev.D19: 2105 (1979).

    ADS  Google Scholar 

  24. R. I. Jibuti, Particles and Nuclei,14: 741 (1983).

    Google Scholar 

  25. B. Buck, A. D. Hill, Nucl. Phys.A95: 271 (1967).

    ADS  Google Scholar 

  26. I. Rotter, Particles and Nuclei15: 762 (1984).

    Google Scholar 

  27. S. Ali, A. R. Bodmer, Nucl. Phys.80: 99 (1966).

    Article  Google Scholar 

  28. T. Ya. Michelashvily, Yu. F. Smirnov. A. M. Shirokov, Preprint of Institute of Physics, Tbilisy, (1986).

    Google Scholar 

  29. W. Eyrich et al., Phys. Rev.C36: 416 (1987).

    ADS  Google Scholar 

  30. D. Lebrun et al., Phys. Lett.B97: 358 (1980).

    ADS  Google Scholar 

  31. H. Feshbach, Ann. Phys.19: 287 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Smirnov, Y.F. (1989). Harmonic Oscillator Representation in the Theory of Scattering and Reactions. In: Gruber, B., Iachello, F. (eds) Symmetries in Science III. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0787-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0787-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8082-8

  • Online ISBN: 978-1-4613-0787-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics