Advertisement

Properties of Orthogonal Operators

  • B. R. Judd
  • D. J. Newman
  • Betty Ng

Abstract

The problem of fitting spectroscopic energies to parameters arises in many contexts, including atomic theory, crystal field theory, nuclear theory and molecular vibration/rotation theory. Both historical accident and variations in the form of the available data have led to rather different approaches being adopted in each case. The aim of this article is to show that a unified approach exists based on the concept of orthogonal operators and that group theoretical considerations can be used to determine useful parametrizations. An exhaustive list of references is provided1–28 and the problem of using orthogonal operators for restricted sets of data is discussed in some detail.

Keywords

Irreducible Representation Group Chain Interact Boson Model Crystal Field Theory Core Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.J. Newman, Parameterization schemes in solid state physics, Aust. J. Phys., 31: 489 (1978).Google Scholar
  2. 2.
    D.J. Newman, Matrix mutual orthogonality and parameter independence, J. Phys. A: Math. Gen., 14: L429 (1981).Google Scholar
  3. 3.
    B.R. Judd J.E. Hansen and A.J.J. Raassen, Parametric fits in the atomic d shell, J. Phys. N: At. Mol. Phys., 15: 1457 (1982).Google Scholar
  4. 4.
    D.J. Newman, Operator orthogonality and parameter uncertainty, Phys. Lett., 92A: 167 (1982).Google Scholar
  5. 5.
    B.R. Judd, Operator averages and orthogonalities, in “Group Theoretical Methods in Physics” (Lecture Notes in Physics, Vol.201), G. Denardo, G. Ghirardi and T. Weber, eds., Springer, Berlin (1984).Google Scholar
  6. 16.
    B.R. Judd, Classification of operators in atomic spectroscopy by Lie groups, in “Symmetries in Science II”, B. Gruber and R. Lenczewski, eds., Plenum, New York 265 (1986).Google Scholar
  7. 17.
    B. R. Judd and R.C. Leavitt, Many-electron orthogonal operators in atomic shell theory, J. Phys. B: At. Mol. Phys., 19: 485 (1986).Google Scholar
  8. 18.
    W.-Ü.L. Tchang-Brillet, M.-Ch. Artru and J.-F. Wyart, The 3rd4-3d34p transitions of triply ionized manganese (MnIV), Phys. Scr. 33: 390 (1986).Google Scholar
  9. 19.
    H. Dothe, Orthogonal scalar operators for mixed atomic configurations and application to term-analysis residues, Thesis, The Johns Hopkins University, Baltimore, Maryland (1986).Google Scholar
  10. 10.
    R. C. Leavitt, A complete set of f-electron scalar operators, J. Phys. A: Math. Gen., 20: 3171 (1987).Google Scholar
  11. 11.
    H. Dothe and B. R. Judd, Orthogonal operators applied to term analysis residues for FeVI 3d24p, J. Phys. B: At. Mol. Phys., 20: 1143 (1987). Google Scholar
  12. 12.
    J.E. Hanses, B.R. Jud and G.M.S Lister. Parametric fitting to 2pN3d configurations using orthogonal operators, J. Phys. B: At. Mol. Phys., 20: 5291 (1987).Google Scholar
  13. 13.
    J.E. Hansen and B.R. Judd, Fine-structure analyses with orthogonal operators, J. Phys. B: At. Mol. Phys., 18: 2327 (1985).Google Scholar
  14. 14.
    R.C. Leavitt, Effective operators in atomic physics, Thesis, The Johns Hopkins University, Baltimore, Maryland (1988).Google Scholar
  15. 15.
    J.E. Hansen, A.J. Raassen, P.H.M. Uylings and G.M.S. Lister, Parametric fitting to dN configurations using orthogonal operators, in “Atomic Spectroscopy and Highly Ionised Atoms”, H.G. Berry, R. Dunford and L. Young, eds., North-Holland, Amsterdam (1988).Google Scholar
  16. 16.
    J.E. Hansen, A.J. Raassen, P.H.M. Uylings and G.M.S. Lister, Parametric fitting to dN configurations using orthogonal operators, in “Atomic Spectroscopy and Highly Ionised Atoms”, H.G. Berry, R. Dunford and L. Young, eds., North-Holland, Amsterdam (1988).Google Scholar
  17. 17.
    J.E Hansen, P.H.M. Uylings and A.J.J. Raassen, Parametric Fitting with orthogonal operators, Phys. Scr., 76: 1352 (1949). Google Scholar
  18. 18.
    G. Racah, Theory of complex spectra. IV. Phys. Rev., 76: 1352 (1949).Google Scholar
  19. 19.
    R.D. Cowan, The theory of atomic structure and spectra, University of California Press (1981).Google Scholar
  20. 20.
    P.K. MacKeown and D.J. Newman, Computational techniques in physics, Adam Hilger (1987).Google Scholar
  21. 22.
    F. Iachello and A. Arima, The interacting boson model, Cambridge University Press (1987).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • B. R. Judd
    • 1
  • D. J. Newman
    • 2
  • Betty Ng
    • 2
  1. 1.Department of Physics and AstronomyThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Department of PhysicsUniversity of Hong KongHong Kong

Personalised recommendations