Skip to main content

Modern Concepts of Regulation of Intestinal Nutrient Transport

  • Chapter
  • 62 Accesses

Part of the book series: Topics in Gastroenterology ((TGEN))

Abstract

Humans, like other animals, insult their intestines with wildly varying food inputs. We start out life as 7-lb babies, consuming small amounts of food, all of it in the form of milk, yet we end up as adults weighing between 40 and 140 kg, consuming quantities of food one or two orders of magnitude greater than the intake of babies, mostly in the form of solids. If we’re lucky, we can eat whatever we want in whatever amounts we want: one day, a high-carbohydrate diet of elegant pastries; the next day, a no-carbohydrate, high-protein diet of filet mignon; the following day, neither pastry nor filet mignon, but a high-fat diet of rich cheese. If unlucky and poor, we may starve or occasionally get something to eat, but frequently suffer from deficiencies of vitamins, essential amino acids, or nitrogen. Even if living in affluence, we may be unlucky in other ways: we may develop diabetes or may require surgical resection of the intestine or else total parenteral nutrition. If working vigorously as lumberjacks, we may consume 7000 calories per day. Conversely, lying in bed all day requires only 800 calories. Half of us occasionally become pregnant, nurse one or more infants, and must increase our calorie intake correspondingly (up to several-fold in some nursing mammals).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weser E. Nutritional aspects of malabsorption. Am J Med 1978;67:1014–1020.

    Article  Google Scholar 

  2. Karasov WH, Diamond JM. A simple method for measuring intestinal solute uptake in vitro. J Comp Physiol B 1983;152:105–116.

    Article  CAS  Google Scholar 

  3. Karasov WH, Diamond JM. Adaptive regulation of intestinal nutrient transporters for nutrients. Proc Natl Acad Sci USA 1987;84:2242–2245.

    Article  PubMed  Google Scholar 

  4. Ferraris RP, Diamond JM. A method for measuring apical glucose transport site density in intact intestinal mucosa by means of phlorizin binding. J Membr Biol 1986;94:65–75.

    Article  PubMed  CAS  Google Scholar 

  5. Solberg DH, Diamond JM. Comparison of different dietary sugars as inducers of intestinal sugar transport. Am J Physiol 1987;252:G574–578.

    PubMed  CAS  Google Scholar 

  6. Karasov WH, Solberg D, Carter S et al. Uptake pathways for amino acids in mouse intestine. Am J Physiol 1986;251:G501–508.

    PubMed  CAS  Google Scholar 

  7. Ferraris RP, Diamond JM, Kwan W. Dietary regulation of intestinal transport of the dipeptide carnosine. Am J Physiol 1988;255:G143–150.

    PubMed  CAS  Google Scholar 

  8. Rose RC. Water-soluble vitamin absorption in intestine. Ann Rev Physiol 1980;42:157–171.

    Article  CAS  Google Scholar 

  9. Rose RC. Intestinal absorption of water soluble vitamins. In: Physiology of the Digestive Tract, 2nd ed. (Johnson LR, ed). New York: Raven Press, pp. 1581–15965, 1987.

    Google Scholar 

  10. Wright EM, Harms V, Mircheff AK, van Os CH. Transport properties of intestinal basolateral membranes. Ann NY Acad Sci 1981;372:626–636.

    Article  PubMed  CAS  Google Scholar 

  11. Stevens BR, Kaunitz JD, Wright EM. Intestinal transport of amino acids and sugars: advances using membrane vesicles. Ann Rev Physiol 1984;46:417–433.

    Article  CAS  Google Scholar 

  12. Karasov WH, Pond RS, Solberg DH, Diamond JM. Regulation of proline and glucose transport in mouse intestine by dietary substrate levels. Proc Natl Acad Sci USA 1983;80:7674–7677.

    Article  PubMed  CAS  Google Scholar 

  13. Cheeseman CI, Maenz D. Induction of glucose transporter by hyperglycemia in rat enterocyte basolateral membranes. J Physiol 1985:369:152P.

    Google Scholar 

  14. Diamond JM, Karasov WH. Effect of dietary carbohydrate on monosaccharide uptake by mouse small intestine in vitro. J Physiol 1984;349:419–440.

    PubMed  CAS  Google Scholar 

  15. Ferraris RP, Diamond JM. Use of phlorizin binding to demonstrate induction of intestinal glucose transporters. J Membr Biol 1986;94:77–82.

    Article  PubMed  CAS  Google Scholar 

  16. Walker R. The Molecular Biology of Enzyme Synthesis. New York: Wiley, 1983.

    Google Scholar 

  17. Karasov WH, Diamond JM. Adaptive regulation of sugar and amino acid transport by vertebrate intestine. Am J Physiol 1983;245:G443–G462. 1983.

    CAS  Google Scholar 

  18. Kimber CL, Mukherjee T, Deller DJ. In vitro attachment to the intestinal brush border effect of iron stores and other environmental factors. Am J Dig Dis 1973;18:781–791.

    PubMed  CAS  Google Scholar 

  19. Morrissey RL, Wasserman RH. Calcium absorption and calcium-binding protein in chicks on differing calcium and phosphorus intakes. Am J Physiol 1971;220–1509–1515.

    PubMed  Google Scholar 

  20. Lee DBN, Walling MW, Brautbar N. Intestinal phosphate absorption: Influence of vitamin D and non-vitamin D factors. Am J Physiol 1986;250:G369–G373.

    PubMed  CAS  Google Scholar 

  21. Rose RC, Nahrwold DL. Intestinal ascorbic acid transport following diets of high or low ascorbic acid content. Int J Vit Nutr Res 1978;48:382–386.

    CAS  Google Scholar 

  22. Patrini C, Cusaro G, Ferrari G, Rindi G. Thiamin transport by rat small intestine in vitro: Influence of endogenous thiamin content of jejunal tissue. Acta Vitaminol Enzymol 1981;3 m.s.:17–26.

    PubMed  Google Scholar 

  23. Karasov WH, Solberg DH, Diamond JM. Dependence of intestinal amino acid uptake on dietary protein or amino acid levels. Am J Physiol 1987;252:G614–625.

    PubMed  CAS  Google Scholar 

  24. Stein ED, Chang, SD, Diamond JM. Comparison of different dietary amino acids as inducers of intestinal amino acid transport. Am J Physiol 1987;252:G626–635.

    PubMed  CAS  Google Scholar 

  25. Csaky TZ, Fischer E. Intestinal sugar transport in experimental diabetes. Diabetes 1981;30:568–574.

    Article  PubMed  CAS  Google Scholar 

  26. Debnam ES, Karasov WH, Thompson CS. Hyperglycemia and glucose transport across the rat small intestine. An in vitro and in vivo study. J Physiol 1986;376:36P.

    Google Scholar 

  27. Debnam ES. Evidence that the presence of sugars in the lower ileum can influence glucose absorption from the upper small intestine. J Physiol 1981;324:545P.

    Google Scholar 

  28. Lind J, Munck BG, Olsen O. Effects of dietary intake of NaCl on sugar and amino acid transport across isolated hen colon. J Physiol 1980;3005:327–336.

    Google Scholar 

  29. Weser E, Vandeventer A, Tawil T. Stimulation of small bowel mucosal growth by midgut infusion of different sugars in rats maintained by total parenteral nutrition. J Ped Gastroenterol Nutr 1982;1:411–416.

    Article  CAS  Google Scholar 

  30. Urban E, Weser E. Intestinal adaptation to bowl resection. Adv Int Med 1980;26:265–291.

    CAS  Google Scholar 

  31. Thomson ABR. Uptake of glucose into the intestine of diabetic rats. Effects of variations in the effective resistance of the unstirred water layer. Diabetes 1981;30:247–255.

    Article  PubMed  CAS  Google Scholar 

  32. Henning SJ. Postnatal development: Coordination of feeding, digestion, and metabolism. Am J Physiol 1981;241:G199–G214.

    PubMed  CAS  Google Scholar 

  33. Henning SJ. Ontogeny of enzymes in the small intestine. Ann Ref Physiol 1985;47:231–245.

    Article  CAS  Google Scholar 

  34. Buddington RK, Chen J, Diamond JM. Genetic and phenotypic adaptation of intestinal nutrient transport to diet. J Physiol 1987;393:261–281.

    PubMed  CAS  Google Scholar 

  35. Yeh K-Y, Holt PR. Ontogenic timing mechanism initiates the expression of rat intestinal sucrase activity. Gastroenterology 1986;90:520–526.

    PubMed  CAS  Google Scholar 

  36. Diamond JM. Hard-wired local triggering of intestinal enzyme expression. Nature 1986;324:408.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Publishing Corporation

About this chapter

Cite this chapter

Diamond, J.M. (1989). Modern Concepts of Regulation of Intestinal Nutrient Transport. In: Shaffer, E., Thomson, A.B.R. (eds) Modern Concepts in Gastroenterology Volume 2. Topics in Gastroenterology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0781-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0781-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8079-8

  • Online ISBN: 978-1-4613-0781-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics