Skip to main content

The Ionic Channels of Glial Cells

  • Chapter
Myelination and Demyelination
  • 95 Accesses

Abstract

Considerable recent experimentation has demonstrated the presence of numerous types of ionic channels in the cell membranes of all classes of glial cells. Some of these ionic channels are largely voltage-insensitive, others show prominent voltage-sensitivity and still other channels are activated by pharmacological agents. As a whole these channels appear to play prominent roles in the activities of glial cells, such as potassium ion regulation or possibly in the intercellular transfer of substances to axons. What has become increasingly clear is that the distribution of some of these channels in both axons and in glia is interdependent. Abnormal neuronal electrophysiological function occurs as a result of demyelination, and neurons themselves appear to influence the electrophysiological properties of glial cells. Furthermore, in demyelination and remyelination the electrical properties of neurons and glia are altered in ways that contribute extensively to the pathophysiology and clinical symptomatology of these processes. This brief review will attempt to summarize some of the information available concerning the ionic channels of glia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anglister L, Farber IC, Shahar A, Grinvald A: Localization of voltage-dependent calcium channels along developing neurites: Their possible role in regulating neurite elongation. Dev Biol 94:351–365, 1982

    Article  PubMed  CAS  Google Scholar 

  2. Baker M, Bostock H, Grafe P, Martius P: Function and distribution of three types of rectifying channel in rat spinal root myelinated axons. J Physiol 383:45–67, 1987

    PubMed  CAS  Google Scholar 

  3. Ballanyi K, Grafe P, ten Bruggencate G: Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices. J Physiol 382:159–174, 1986

    Google Scholar 

  4. Barres BA, Chun LLY, Corey DP: Ion channel expression by white matter glia: 1. Type 2 astrocytes and oligodendrocytes. Glia 1:10–30, 1988

    Article  PubMed  CAS  Google Scholar 

  5. Bevan S, Chiu SY, Gray PTA, Ritchie JM: Voltage-gated ion channels in rat cultured astrocytes. In: Ion channels in neural membranes. Eds. JM Ritchie, RD Keynes L Bolis, A Liss, New York, pp 159–174, 1986

    Google Scholar 

  6. Bevan S, Chiu SY, Gray PTA, Ritchie JM: The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes. Proc R Soc London B 225:299–313, 1985

    Article  CAS  Google Scholar 

  7. Bevan S, Raff M: Voltage-dependent potassium currents in cultured astrocytes. Nature 315:229–232, 1985

    Article  PubMed  CAS  Google Scholar 

  8. Bostock H, Sears TA: Continuous conduction in demyelinated mammalian nerve fibers. Nature 263:786–787, 1976

    Article  PubMed  CAS  Google Scholar 

  9. Bostock H, Sears TA: The internodal axon membrane: Electrical excitability and continuous conduction in segmental demyelination. J Physiol 280:273–301, 1978

    PubMed  CAS  Google Scholar 

  10. Bostock H, Sears TA, Sherrat RM: The spatial distribution of excitability and membrane current in normal and demyelinated mammalian nerve fibers. J Physiol 341:41–58, 1983

    PubMed  CAS  Google Scholar 

  11. Bostock H, Sherrat RM, Sears TA: Overcoming conduction failure in demyelinated nerve fibers by prolonging action potentials. Nature 274:385–387, 1978

    Article  PubMed  CAS  Google Scholar 

  12. Bowman CL, Kimelberg HK: Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature 311:656–659, 1984

    Article  PubMed  CAS  Google Scholar 

  13. Bowman CL, Kimelberg HK, Frangakis MV, Berwald-Netter Y, Edwards C: Astrocytes in primary culture have chemically activated sodium channels. J Neurosci 4:1527–1534, 1984

    PubMed  CAS  Google Scholar 

  14. Bray GM, Rasminsky M, Aguayo AJ: Interactions between axons and their sheath cells. Ann Rev Neurosci 4:127–162, 1981

    Article  PubMed  CAS  Google Scholar 

  15. Brew H, Gray PTA, Mobbs P, Attwell D: Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering. Nature 324:466–468, 1986

    Article  PubMed  CAS  Google Scholar 

  16. Catterall WA: The molecular basis of neuronal excitability. Science 223:653–661, 1984

    Article  PubMed  CAS  Google Scholar 

  17. Chiu SY: Sodium currents in axon-associated Schwann cells from adult rabbits. J Physiol 386:181–203, 1987

    PubMed  CAS  Google Scholar 

  18. Chiu SY: Changes in excitable membrane properties in Schwann cells of adult rabbit sciatic nerves following nerve transection. J Physiol 396:173–188, 1988

    PubMed  CAS  Google Scholar 

  19. Chiu SY, Ritchie JM: Potassium channels in nodal and internodal axon membrane of mammalian myelinated fibers. Nature 284:170–171, 1980

    Article  PubMed  CAS  Google Scholar 

  20. Chiu SY, Ritchie JM: Evidence for the presence of potassium channels in the paranodal region of acutely demyelinated mammalian single nerve fibers. J Physiol 313:415–437, 1981

    PubMed  CAS  Google Scholar 

  21. Chiu SY, Ritchie JM: On the physiological role of internodal potassium channels and the security of conduction in myelinated nerve fibers. Proc R Soc London B 220:415–422, 1984

    Article  CAS  Google Scholar 

  22. Evans PD, Reale V, Villegas J: Peptidergic modulation of the membrane potential of the Schwann cell of the squid giant nerve fiber. J Physiol 379:61–82, 1986

    PubMed  CAS  Google Scholar 

  23. Feasby TE, Bostock H, Sears TA: Conduction in regenerating dorsal root fibers. J Neurol Sci 49:439–454, 1981

    Article  PubMed  CAS  Google Scholar 

  24. Gardiner-Medwin AR: A study of the mechanisms by which potassium moves through brain tissue in the rat. J Physiol 335:353–374

    Google Scholar 

  25. Gilbert P, Kettenmann H, Schachner M: Gamma-aminobutyric acid directly depolarizes cultured oligodendrocytes. J Neurosci 4: 561–569, 1984

    PubMed  CAS  Google Scholar 

  26. Grafe P, Ballanyi K: Cellular mechanisms of potassium homeostasis in the mammalian nervous system. Can J Physiol Pharmacol 65:1038–1042, 1987

    Article  PubMed  CAS  Google Scholar 

  27. Gray PTA, Bevan S, Chiu SY, Shrager P, Ritchie JM: Ionic conductances in mammalian Schwann cells. In: Ion channels in neural membranes. Eds. JM Ritchie, RD Keynes, L Bolis, A Liss, New York, pp 145–157, 1986

    Google Scholar 

  28. Hamprecht B, Kemper W, Amano T: Electrical response of glioma cells to acetylcholine. Brain Res 101:129–135, 1976

    Article  PubMed  CAS  Google Scholar 

  29. Hertz L, Schousboe I, Hertz L, Schousboe A: Receptor expression in primary cultures of neurons or astrocytes. Prog Neuro-psychopharmacol Biol Psychiat 8:521–527, 1984

    Article  CAS  Google Scholar 

  30. Hild W, Tasaki I: Morphological and physiological properties of neurons and glial cells in tissue culture. J Neurophysiol 25:277–304, 1962

    PubMed  CAS  Google Scholar 

  31. Hille B: Ionic channels of excitable membrane. Sinauer, Sunderland, MA, 1984

    Google Scholar 

  32. Hosli L, Hosli E, Andres PF, Landolt H: Evidence that the depolarization of glial cells by inhibitory amino acids is caused by an efflux of K+ from neurons. Exp Brain Res 42:443–448, 1981

    Article  Google Scholar 

  33. Hosli L, Hosli E, Baggi M, Bassetti C, Uhr M: Action of dopamine and serotonin on the membrane potential of cultured astrocytes. Exp Brain Res 65:482–485, 1987

    PubMed  CAS  Google Scholar 

  34. Hosli E, Hosli L: Autoradiographic localization of binding sites for 3H-serotonin and 3H-ketaserin on neurons and astrocytes of cultured rat brain stem and spinal cord. Exp Brain Res 65:486–490, 1987

    PubMed  CAS  Google Scholar 

  35. Hosli L, Hosli E, Schneider U, Wiget W: Evidence for the existence of histamine H1- and H1-receptors on astrocytes of cultured rat central nervous system. Neurosci Lett 48:287–291, 1984

    Article  PubMed  CAS  Google Scholar 

  36. Hosli L, Hosli E, Zehntner C, Lehmann R, Lutz TW: Evidence for the existence of alpha and beta-adrenoreceptors on cultured glial cells — an electrophysiological study. Neuroscience 7:2867–2872, 1982

    Article  PubMed  CAS  Google Scholar 

  37. Huxley AF, Stampfli: Evidence for saltatory conduction in peripheral myelinated nerve fibers. J Physiol 108:315–339, 1949

    Google Scholar 

  38. Jessen KR, Mirsky R: Nonmyelin-forming Schwann cells coexpress surface proteins and intermediate filaments not found in myelin-forming cells: a study of Ran-2, A5E3 antigen and glial fibrillary acidic protein. J Neurocytol 13:923–934, 1984

    Article  PubMed  CAS  Google Scholar 

  39. Kettenmann H: K+ and Cl- uptake by cultured oligodendrocytes. Can J Physiol Pharmacol 65:1033–1037, 1987

    Article  PubMed  CAS  Google Scholar 

  40. Kettenmann H, Backus KH, Schachner M: Aspartate, glutamate and aminobutyric acid depolarize cultured astrocytes. Neurosci Lett 52:25–29, 1984

    Article  PubMed  CAS  Google Scholar 

  41. Kettenmann H, Backus KH, Schachner M: Gamma-aminobutyric acid opens CI-channels in cultured astrocytes. Brain Res 404:1–9, 1987

    Article  PubMed  CAS  Google Scholar 

  42. Kettenmann H, Orkand RK, Schachner M: Coupling among identified cells in mammalian nervous system cultures. J Neurosci 3:506–516, 1983

    PubMed  CAS  Google Scholar 

  43. Kettenmann H, Schachner M: Pharmacological properties of GABA, glutamate and aspartate induced depolarizations in cultured astrocytes. J Neurosci 5:3295–3301, 1985

    PubMed  CAS  Google Scholar 

  44. Kettenmann H, Sonnhof U, Schachner M: Exclusive potassium dependence of the membrane potential in cultured mouse oligodendrocytes. J Neurosci 3:500–505, 1983

    PubMed  CAS  Google Scholar 

  45. Kocsis JD: Functional characteristics of potassium channels of normal and pathological mammalian axons. In: Ion channels in Neural Membranes. Eds. JM Ritchie, RD Keynes, L Bolis, A Liss, New York, pp 123–144, 1986

    Google Scholar 

  46. Kocsis JD, Waxman SG: Long-term regenerated fibers retain sensitivity to potassium channel blocking agents. Nature 304:640–642, 1983

    Article  PubMed  CAS  Google Scholar 

  47. Kuffler SW: Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc R Soc London B 168:1–21, 1967

    Article  CAS  Google Scholar 

  48. MacVicar BA: Voltage-dependent calcium channels in glial cells. Science 226:1345–1347, 1984

    Article  PubMed  CAS  Google Scholar 

  49. MacVicar BA: Morphological differentiation of cultured astrocytes is blocked by cadmium or cobalt. Brain Res 420:175–177, 1987

    Article  PubMed  CAS  Google Scholar 

  50. MacVicar BA, Crichton SA, Burnard DM, Tse FWY: Membrane conductance oscillations in astrocytes induced by phorbol ester. Nature 329:242–243, 1987

    Article  PubMed  CAS  Google Scholar 

  51. McLarnon JG, Kim SU: Physiological function of inward potassium currents in bovine oligodendrocytes in culture. This volume.

    Google Scholar 

  52. Newman EA: Regional specialization of retinal glial cell membrane. Nature 309:155–157, 1984

    Article  PubMed  CAS  Google Scholar 

  53. Newman EA: High potassium conductance in astrocyte endfeet. Science 233:453–454, 1986

    Article  PubMed  CAS  Google Scholar 

  54. Newman EA: Regulation of potassium levels by Muller cells in the vertebrate retina. Can J Physiol Pharmacol 65:1028–1034, 1987

    Article  PubMed  CAS  Google Scholar 

  55. Nicoll RA: The coupling of neurotransmitter receptors to ion channels in the brain. Science 241:545–551, 1988

    Article  PubMed  CAS  Google Scholar 

  56. Nowak L, Ascher P, Berwald-Netter Y: Ionic channels in mouse astrocytes in culture. J Neurosci 7:101–109, 1987

    PubMed  CAS  Google Scholar 

  57. Orkand RK: Signalling between neuronal and glial cells. IN: Neuronal-glial cell inter-relationships, ED. TA Sears, Dahlem Konferenzen, Springer-Verlag, Berlin, pp 147–158, 1982

    Google Scholar 

  58. Orkand RK, Dietzel I, Coles JA: Light-induced changes in extracellular volume in the retina of the drone, Apis mellifera. Neurosci Lett 45:273–278, 1984

    Article  PubMed  CAS  Google Scholar 

  59. Pender MP, Sears TA: Conduction block in the peripheral fiervous system in experimental allergic encephalomyelitis. Nature, 296:860–862, 1982

    Article  PubMed  CAS  Google Scholar 

  60. Quandt FN, MacVicar BA: Calcium activated potassium channels in cultured astrocytes. Neuroscience 19:29–41, 1986

    Article  PubMed  CAS  Google Scholar 

  61. Raizada MK, Phillips MI, Crews FT, Sumners C: Distinct angiotensin II receptors in primary cultures of glial cells from rat brain. Proc Natl Acad Sci USA 84:4655–4659, 1987

    Article  PubMed  CAS  Google Scholar 

  62. Ransom B, Neale R, Henkart M, Bullock P, Nelson PG: Mouse spinal cord in cell culture. I. Morphology and intrinsic neuronal electrophysiological properties. J Neurophysiol 40:1132–1150, 1977

    PubMed  CAS  Google Scholar 

  63. Rasminsky M: Ectopic impulse generation in pathological nerve fibers. Trend Neurosci 6:388–390, 1983

    Article  Google Scholar 

  64. Rasminsky M, Sears TA: Internodal conduction in undissected demye1inated nerve fibers. J Physiol 227:323–350, 1972

    PubMed  CAS  Google Scholar 

  65. Reiser G, Hamprecht B: Bradykinin induces hyperpolarizations in rat glioma cells and in neuroblastoma X glioma hybrid cells. Brain Res 239:191–199, 1982

    Article  PubMed  CAS  Google Scholar 

  66. Ritchie JM: Sodium and potassium channels in regenerating and developing mammalian myelinated nerves. Proc R Soc London B 215:273–287, 1982

    Article  CAS  Google Scholar 

  67. Ritchie JM: The distribution of sodium and potassium channels in mammalian myelinated nerve. In: Ion channels in Neural Membranes. Eds. JM Ritchie, RD Keynes, L Bolis, A Liss, New York, pp 105–122, 1986

    Google Scholar 

  68. Ritchie JM, Rogart RB: The density of sodium channels in mammalian myelinated nerve fibers and the nature of the axonal membrane under the myelin sheath. Proc Natl Acad Sci USA 74:211–215, 1977

    Article  PubMed  CAS  Google Scholar 

  69. Schrager P, Chiu SY, Ritchie JM: Voltage-dependent sodium and potassium channels in mammalian cultured Schwann cells. Proc Natl Acad Sci USA 82:948–952, 1985

    Article  Google Scholar 

  70. Seager MJ, Deprez P, Martin-Moutot N, Couraud F: Detection and photoaffinity labelling of the Ca- activated K+ channel-associated apamin receptor in cultured astrocytes from brain. Brain Res 411:226–230, 1987

    Google Scholar 

  71. Soliven B, Szuchet S, Arnason BGW, Nelson DJ: Voltage-gated potassium currents in cultured ovine oligodendrocytes. J Neurosci 8:2131–2141, 1988

    PubMed  CAS  Google Scholar 

  72. Soliven B, Szuchet S, Nelson DJ: Protein Phosphorylation modulated single K channel kinetics in cultured oligodendrocytes. Neurology 38:(suppl 1) 232, 1988

    Google Scholar 

  73. Somjen GG: Extracellular potassium in the mammalian nervous system. Annu Rev Physiol 41:159–177, 1979

    Article  PubMed  CAS  Google Scholar 

  74. Sykova E: Extracellular K+ accumulation in the central nervous system. Prog Biophys Molec Biol 42:135–189, 1983

    Article  CAS  Google Scholar 

  75. Sykova E: Modulation of spinal cord transmission by changes in extracellular K+ activity and extracellular volume. Can J Physiol Pharmacol 65:1058–1066, 1987

    Article  PubMed  CAS  Google Scholar 

  76. Tang CC-M, Orkand RK: Glutamate directly depolarizes glial cells. Neuroseience 7:208, 1982

    Google Scholar 

  77. Tasaki I: Physiology and electrochemistry of nerve fibers. Academic, New York, 1982

    Google Scholar 

  78. Torrens Y, Beaujouan JC, Saffroy M, Daguet de Montety C, Bergstrom L, Glowinski J: Substance P receptors in primary cultures of cortical astrocytes from the mouse. Proc Natl Acad Sci USA 83:9216–9220, 1986

    Article  PubMed  CAS  Google Scholar 

  79. Villegas J: Axon-Schwann cell relationship. In: Current Topics in Membranes and Transport, Vol. 22, The Squid axon. Ed P Baker, Academic Orlando Fl, pp 547–567, 1984

    Google Scholar 

  80. Walz W: Swelling and potassium uptake in cultured astrocytes. Can J Physiol Pharmacol 65:1051–1057, 1987

    Article  PubMed  CAS  Google Scholar 

  81. Waxman SG, Ritchie JM (eds): Demyelinating diseases, Basic and Clinical Electrophysiology. Raven Press, New York, 1981

    Google Scholar 

  82. Waxman SG, Ritchie JM: Organization of ion channels in the myelinated nerve fiber. Science 228:1502–1507, 1985

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Krieger, C., Kim, S.U. (1989). The Ionic Channels of Glial Cells. In: Kim, S.U. (eds) Myelination and Demyelination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0777-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0777-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8077-4

  • Online ISBN: 978-1-4613-0777-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics