Advertisement

Problems in Diffraction Analysis of Real Polycrystals

  • P. Klimanek

Abstract

It is well known that X-ray or neutron diffraction phenomena of real polycrystalline materials are often strongly influenced by the microscopical structure (phase content, grain size and orientation, spatial arrangement of different phases) of the scattering object volume. Methodological problems arising from this fact in the diffraction analysis of polycrystals have been treated with regard to systematic errors of intensity measurements and, of course, in connection with special applications of X-ray or neutron scattering for microstructure characterization. In most of the considerations it was implicitly assumed that all crystallites of a given phase have similar structure (i.e. perfect crystal structure and lattice disorder). Such a presumption is necessary (and possible) in investigations of constitution — related structure characteristics (e.g. electron density, thermal lattice vibrations, short-range order in solid solutions) which in principle require a knowledge of the single-crystallite scattering and therefore must usually be performed with carefully prepared (structurally homogenized), fine-grained powder specimens. However, in the examination of process-related structure parameters (e.g. dislocation densities due to various modes of plastic deformation, substructure characteristics associated with heat treatment, precipitation processes or phase transformations), which more and more becomes the dominating problem of diffraction analysis in materials research, no homogenization treatment of the crystallites structures can be carried out in general.

Keywords

Line Breadth Fourier Coefficient Structural Inhomogeneity Diffraction Vector Lattice Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Klimanek, Crystal Res. & Technol. 18: K15 (1983).CrossRefGoogle Scholar
  2. 2.
    P. Klimanek, G. Grosze, K.-E. Hensger, and U. Martin, Freiberger Forschungsheft B225: 6 (1982).Google Scholar
  3. 3.
    G. Grosze, Thesis, Academy of Mining, Freiberg (1987).Google Scholar
  4. 4.
    P. Klimanek, “Annual Report 1986 on Nuclear Physics Activities and Applications”, ZfK - Publ. 621, CINR Rossendorf (1987).Google Scholar
  5. 5.
    P. Klimanek, Freiberger Forschungsheft B265 (1988).Google Scholar
  6. 6.
    P. Klimanek, Proc. 5th Conference “Solid State Analytics”, Karl-Marx-Stadt, GDR, 1987, Editor: TU Karl-Marx-Stadt (1988).Google Scholar
  7. 7.
    P. Klimanek, Proc. 5th Conference “Solid State Analytics”, Karl-Marx-Stadt, GDR, 1987, Editor: TU Karl-Marx-Stadt (1988).Google Scholar
  8. 8.
    A. Guinier, “X-Ray Diffraction”, W. H. Freeman Comp., San Francisco (1963).Google Scholar
  9. 9.
    M. A. Krivoglaz, “Scattering Theory of X-Rays and Thermal Neutrons by Real Crystals”, Nauka, Moscow (1967), in Russian.Google Scholar
  10. 10.
    M. A. Krivoglaz, “Diffraction Theory of X-Rays and Neutrons by Non-Ideal Crystals”, Naukova Dumka, Kiev (1983), in Russian.Google Scholar
  11. 11.
    H. P. Klug and L. E. Alexander, “X-Ray Diffraction Procedures”, John Wiley & Sons, New York (1954).MATHGoogle Scholar
  12. 12.
    B. E. Warren, J.Appl.Phys. 31: 2237 (1960).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    H. J. Bunge, “Texture Analysis in Materials Science”, Butterworth Publ. London (1982).Google Scholar
  14. 14.
    H. R. Wenk (editor), “Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis”, Academic Press, Orlando (1985).Google Scholar
  15. 15.
    M. A. Shtremel and L. M. Kaputkina, Kristallographiya 15: 443 (1970).Google Scholar
  16. 16.
    M. A. Shtremel and L. M. Kaputkina, Kristallographiya 15: 443 (1970).Google Scholar
  17. 17.
    A. Philipp, Thesis, Academy of Mining, Freiberg (1988).Google Scholar
  18. 18.
    H. J. Bunge, Z. Metallkde 75: 97 (1984).Google Scholar
  19. 19.
    T. R. Anantharaman and J. W. Christian, Acta Cryst. 9: 479 (1956).CrossRefGoogle Scholar
  20. 20.
    C. N. J. Wagner and E. N. Aqua, Adv. X-Ray Anal. 7: 46 (1964).Google Scholar
  21. 21.
    M. Wilkens and K. Eckert, Z. Naturf. 19a: 459 (1964).ADSGoogle Scholar
  22. 22.
    T. Ungar, Freiberger Forschungsheft B 265 (1988).Google Scholar
  23. 23.
    M. A. Shtremel, Kristallographiya 14: 34 (1969).Google Scholar
  24. 24.
    Ya. D. Vishnyakov, “Modern Methods for Structure Research in Deformed Crystals”, Metallurgiya, Moscow (1975), in Russian.Google Scholar
  25. 25.
    B. E. Warren and B. L. Averbach, J. Appl. Phys. 21:595 (1950) and 23:497 and 1059 (1952).Google Scholar
  26. 26.
    Ya. D. Vishnyakov, “Modern Methods for Structure Research in Deformed Crystals”, Metallurgiya, Moscow (1975), in Russian.Google Scholar
  27. 27.
    H. Fischmeister and B. Karlsson, Z. Metallkde 68: 311 (1977).Google Scholar
  28. 28.
    H. Fischmeister and B. Karlsson, Z. Metallkde 68: 311 (1977).Google Scholar
  29. 29.
    H. Fischmeister and B. Karlsson, Z. Metallkde 68: 311 (1977).Google Scholar
  30. 30.
    P. Klimanek, H. Richter, A. N. Ivanov, and Yu. A. Skakov, in preparation.Google Scholar
  31. 31.
    G. Küchhold, Thesis, Academy of Mining, Freiberg (1988).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • P. Klimanek
    • 1
  1. 1.Section of Metallurgy and Materials TechnologyAcademy of FreibergFreibergGDR

Personalised recommendations