Skip to main content

Thyroid Hormone Regulation of Specific mRNAS in the Developing Brain

  • Chapter
Iodine and the Brain

Abstract

Thyroid hormones, T3 and T4, have been shown to play significant but poorly understood roles in development and differentiation of rodent and human brain (1–7). In the human, disorders of maternal and fetal thyroid function include maternal and secondary fetal iodine deficiency, maternal hypothyroidism or hyperthyroidism, as well as disorders related to deficient fetal autonomous thyroid hormone secretion, i.e., goiter or sporadic congenital hypothyroidism. These disorders are identifiable causes of mental retardation (4, 8, 9, 10), cerebral palsy (11, 12), and other significant neurological abnormalities (5, 6, 11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.M. De Escobar, F. Escobar del Rey, Thyroid Hormone and the Developing Brain, in “Congenital Hypothyroidism”, J.H. Dussault, P. Walker, ed., Academic Press, New York, 85–127 (1983)

    Google Scholar 

  2. J.T. Eayrs, W.A. Lishman, The maturation of behavior in hypothyroidism and starvation, Brit. J. of Anim. Befoav. 3:17–24 (1955)

    Article  Google Scholar 

  3. C.E. Hendrich, W.J. Jackson, S.P. Porter field, Behavioral testing of progenies of Tx (Hypothyroid) and growth hormone treated Tx rats: an animal model for mental retardation, Neuroendo. 438:429–437 (1984)

    Article  Google Scholar 

  4. R.Z. Klein, Infantile hypothyroidism then and new: the results of neonatal screening, Curr. Prob. Ped. 15:1–58 (1985)

    CAS  Google Scholar 

  5. J. Birrell, G.J. Frost, and J.M. Parkin, The development of children with congenital hypothyroidism, Dev. Med. Child Neuro. 25:512-519 (1983)

    Article  CAS  Google Scholar 

  6. J.F. Rovet, D. Westbrook, R.M. Ehrlich, Neonatal thyroid deficiency: early temperamental and cognitive characteristics, J Am. Acad. Child. Psych. 23:10–>22 (1984)

    Article  CAS  Google Scholar 

  7. J. Legrand, Hormones thyroidiennes et maturation du systeme nerveux, J. Physiol., Paris 78:603–652 (1982-1983)

    Google Scholar 

  8. R. Fierro-Benitez, Iodized Oil and Mental Development, in: “Iodine Deficiency Disorders and Congenital Hypothyroidism”, G. Medeiros-Neto, R.M.B. Maciel, A. Halpern, ed., Ache, Sao Paolo, Brasil, 120–126 (1986)

    Google Scholar 

  9. R. MacFaul, S. Dorner, E.M. Brett, D.B. Grant, Neurological abnormalities in patients treated for hypothyroidism from early life, Arch. Pis. Child. 53:611–619 (1978)

    Article  CAS  Google Scholar 

  10. E.B. Mann, W.S. Jones, R.H. Holden, E.D. Mellits, Thyroid function in human pregnancy VIII: retardation of progeny aged 7 Years; relationships to maternal age and maternal thyroid function, Amer. J. of Cbstet. Gynecol., 111:905–916 (1971)

    Google Scholar 

  11. G.R. DeLong, J.B. Stanbury, R. Fierro-Benitez, Neurological signs in congenital iodine-deficiency disorder (endemic cretinism), Dev. Med. & Child Neur. 27:317–324 (1985)

    Article  CAS  Google Scholar 

  12. K.B. Nelson, J.H. Elleriberg, Antecedents of cerebral palsy: I. univariate analysis of risks, Amer. J. of Pis. Child. 139:1031–1038 (1985)

    Google Scholar 

  13. N.P. Rosman, “Neurological and muscular aspects of hypothyroidism in childhood”, ed. by A.L. Prensky, The Pediatric Clinics of North America, Saunders, Philadelphia, 575–594 (1975)

    Google Scholar 

  14. R.L. Sidman and P. Rakic, Development of the human central nervous system, in: “Histology and Histopathology of the nervous system”, W. Haymaker and R.D. Adams, ed., Thomas, Springfield, I1., 1:3–145, (1974)

    Google Scholar 

  15. L. Jianquin, W. Xin, Y. Yuquin, W. Rewei, Q. Dakai, X. Zhenfu, and W. Jun, The effects on fetal brain development in the rat of a severely iodine deficient diet derived from an endemic area: Observations on the First Generation, Neuropath, and App. Neurobio. 12:261–276 (1985)

    Article  Google Scholar 

  16. M. Marin-Padilla, Prenatal and early postnatal ontogenesis of the human motor cortex: a Golgi study. I. The sequential development of the cortical layers, Brain Res. 23:167–191 (1970)

    Article  PubMed  CAS  Google Scholar 

  17. D.A. Fisher, J.H. Dussault, J. Sack, and I.J. Chopra, Ontogenesis of hypothalamic>-pituitary-thyroid function and metabolism in man, sheep, and rat, Rec. Procrr. Horn. Res. 33:59–107 (1977)

    Google Scholar 

  18. C.H. Narayanan, Y. Narayanan, R.C. Browne, Effects of induced thyroid deficiency on the development of suckling behavior in rats, Physiol. Behav. 29:361–370 (1982)

    Article  PubMed  CAS  Google Scholar 

  19. S.A. Stein, P.M. Adams, Neurobiological and molecular biological abnormalities in the hyt/hythypothyroid mouse, American Thyroid Assoc., Abstract #108, Washington, D.C. (1987)

    Google Scholar 

  20. C.H. Narayanan, Y. Narayanan, Cell formation in the motor nucleus and mesencephalic nucleus of the trigeminal nerve of rats made hypothyroid by propylthiouracil, Exp. Brain. Res. 59:257–266 (1985)

    Article  PubMed  CAS  Google Scholar 

  21. M. Berry, Development of the cerebral neocortex of the rat, in: “Aspects of Neurogenesis”, G. Gottlieb, ed., Academic Press, New York, 3–68 (1974)

    Google Scholar 

  22. S.P. Wise, J.W. Fleshman and E.G. Jones, Maturation of pyramidal cell form in relation to developing afferent and efferent connections of rat somatic sensory cortex, Neurosci. 4:1275–1297 (1979)

    Article  CAS  Google Scholar 

  23. J.M. Donatelle, Growth of the corticospinal tract and the development of placing reactions in the postnatal rat, J. Camp. Neurol.. 175:207–232 (1977)

    Article  CAS  Google Scholar 

  24. D.A. Kristt, Neuronal differentiation in somatosensory cortex of the rat. I.relationship to synaptogenesis in the first postnatal week, Brain Res. 150:467–486 (1978)

    Article  PubMed  CAS  Google Scholar 

  25. R.R. Sturrock, Histogenesis of the anterior limb of the anterior commissure of the mouse brain, ’I. a quantitative study of changes in the glial population with age, J. Anat. 117:17–35 (1974)

    PubMed  CAS  Google Scholar 

  26. J.W. Davenport, Perinatal hypothyroidism in rats. Persistent motivational and metabolic effects, Dev. Psychobiol. 9:67–82 (1986)

    Article  Google Scholar 

  27. J.W. Davenport, L.M. Gonzalez, R.S. Hennies, and W.W. Hagquist, Severity and timing of early thyroid deficiency as factors in the induction of learning disorders in rats, Horn. Behav. 7:139 (1976)

    Article  CAS  Google Scholar 

  28. T. Noguchi, T. Sugisaki, I. Satoh and M. Kudo, Partial restoration of cerebral myelination of the congenitally hypothyroid mouse by parenteral or breast milk administration of thyroxine, J Neurosci, 45: 1419 – 1426 (1985)

    CAS  Google Scholar 

  29. W.G. Beamer, E.M. Eicher, L.J. Maltais and J.L. Southard, Inherited primary hypothyroidism in mice, Science 212:61–62 (1981)

    Article  PubMed  CAS  Google Scholar 

  30. W.G. Beamer, L.A. Cresswell, Defective thyroid ontogenesis in fetal hypothyroid (hyt/hyt) Mice, Anat. Rec. 202:387–393 (1982)

    Article  PubMed  CAS  Google Scholar 

  31. W.G. Beamer, M.C. Wilson, E.H. Leiter, Endocrinology, In: “The mouse in biomedical research”, H.L. Foster, J.D. Small, J.G. Fox, ed. III, Academic Press, New York, 165–245 (1983)

    Google Scholar 

  32. P.M. Adams, S.A. Stein, M. Palnitkar, A. Anthony, L. Gerrity, Evaluation and characterization of the hyt/hyt hypothyroid mouse I: somatic and behavioral studies, Neuroendocrinology (in press) (1988)

    Google Scholar 

  33. N. Chaudhari and W.E. Hahn, Genetic expression in the developing brain, Science 220:924–928 (1983)

    Article  PubMed  CAS  Google Scholar 

  34. D.L. St. Germain, V.A. Galton, Comparative study of pituitary- thyroid hormone economy in fasting and hypothyroid rats, J. Clin. Invest. 75:679–688 (1983)

    Article  Google Scholar 

  35. J. Altman, K. Sudarshan, Postnatal development of locomotion in the laboratory rat, Animal Behav. 23:896–920 (1975)

    Article  CAS  Google Scholar 

  36. J.R. Tata, The action of growth and developmental hormones, Biol. Rev. 55:285–319 (1980)

    Article  PubMed  CAS  Google Scholar 

  37. H.C. Tcwle, “ Effects of thyroid hormones on cellular RNA metabolism,” J.H. Oppenheimer and H. Samuels, ed., Academic Press, New York, 179–213 (1983)

    Google Scholar 

  38. S.A. Stein, Thyroid hormone control of gene expression in Sprague- Dawley rat brain and liver, Ann, of Neuro. 18:385 (1985)

    Google Scholar 

  39. C.T. Thompson, C. Weinberger, R. Lebo, R.M. Evans, Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system, Science 237:1610-1614 (1987)

    Article  PubMed  CAS  Google Scholar 

  40. S.A. Lewis, M. G. Lee and N.J. Cowan, Five mouse tubulin isotypes and their regulated expression during development, J. Cell Bio. 101:852–861 (1984)

    Article  Google Scholar 

  41. S.A. Lewis and N.J. Cowan, Temporal expression of mouse glial fibrillary acidic protein mRNA studied by a rapid in situ hybridization procedure, J. Neurochem. 913–919 (1985)

    Google Scholar 

  42. J.A. Fagin, S. Sianina and S. Melmed, Triiodothyronine stimulates rat pituitary insulin-like growth factor-I gene expression in vitro and in vivo, American Thyroid Association, Abstract #94, (1986)

    Google Scholar 

  43. J. Bond, and S. Farmer, Regulation of tubulin and act in mRNA production in rat brain: expression of a new B-tubulin mRNA with development, Molec. Cell Bio. 3:1333–1342 (1983)

    CAS  Google Scholar 

  44. C.E. Hendrich, W. Ocasio-Torres, J. Berdecia-Rodriquez, S.P. Forterfield, Brain and liver ribosomal protein synthesis and profiles in hypothyroid mothers and their progenies, American Thyroid Assoc., Abstract #106 (1987)

    Google Scholar 

  45. J. Scott, M. Urdea, M. Quiroga, R. Sanchez-Fescador, N. Fong, M. Selby, W.J. Rutter, G.I. Bell, Structure of a mouse submaxillary epidermal grcwth factor and seven related proteins, Science 221:236–240 (1983)

    Article  PubMed  CAS  Google Scholar 

  46. S.B. Hoath, J. Lakshmanan, S.M. Scott, D.A. Fisher, Effect of thyroid hormones on epidermal growth factor concentration in neonatal mouse skin, Erdocrin. 112:308–314 (1983)

    Article  CAS  Google Scholar 

  47. R.M. Gubits, P.A. Shaw, E.W. Gresik, A. Qnetti-Muda, T. Barka, Epidermal grcwth factor gene expression is regulated differently in mouse kidney and submandibular gland, Erdocrin. 119:1382–1387 (1986)

    Article  CAS  Google Scholar 

  48. D.L. Simpson, R. Morrison, J. de Vellis, H.R. Herschman, Evidential growth factor binding and mitogenic activity of purified populations of cells from the central nervous system, J. Neurosci. Res. 8:453–462 (1982)

    Article  PubMed  CAS  Google Scholar 

  49. R.S. Morrison, H. I. Kbrnblum, F. M. Leslie, R. A. Rradshaw, Trophic stimulation of cultured neurons from neonatal rat brain by epidermal growth factor, Science. 238:72–75(1987)

    Article  PubMed  CAS  Google Scholar 

  50. G. Almazan, P. Honegger, J.M. Matthieu and B. Guentert-Lauber, Epidermal growth factor and bovine growth hormone stimulate differentiation and myelination of brain cell aggregates in culture, Dev. Brain Res. 21:257–264 (1985)

    Article  CAS  Google Scholar 

  51. S.T. Brady, Cytotypic specialization of the neuronal cytoskeleton and the cytomatrix: implications for neuronal growth and regeneration, in: “Cellular and Molecular Aspects of Neural Development and Regeneration”, A. Goria, et. al, ed., Springer- Verlag, New York, (1988)

    Google Scholar 

  52. T. Takahashi, Transplacental effects of 3,5-dimethyl-3’ -isopropyl- 1-thyrcxiine on tubulin content in fetal brains in rats, Japanese Jrnl. of Phvsio. 34:365–368 (1983)

    Article  Google Scholar 

  53. S. Chaudhury, D. Chatterjee, P.K. Sarkar, Induction of brain tubulin by triidothyronine: dual effect of the hormone on the synthesis and turnover of the protein, Brain Research 339:191–194 (1985)

    Article  PubMed  CAS  Google Scholar 

  54. Ch. Marc, A. Rabie, Microtubules and neurofilaments of the sciatic nerve fibers of the developing Rat: effects of thyroid deficiency, Int. J. Dev. Neurosci.. 3:353–358 (1985)

    Article  Google Scholar 

  55. Ch. Faivre, C. Legrand, A. Rabie, Effects of thyroid deficiency and corrective effects of thyroxine on ndcrotubules and mitochondria in cerebellar purkinje cell dendrites of developing rats, Dev. Brain Res. 21–30 (1983)

    Google Scholar 

  56. Ch. Marc, M. Clavel, A. Rabie, Non-phosphorylated and phosphorylated neurofilaments in the cerebellum of the rat: an immunocytocdiemical study using monoclonal antibodies, development in normal and thyroid-deficient animals, Dev. Brain Res. 249–260 (1986)

    Google Scholar 

  57. D. W. Cleveland, K.F. Sullivan, Molecular biology and genetics of tubulin, Ann. Rev. Biochem. 54:331–365 (1985)

    Article  PubMed  CAS  Google Scholar 

  58. J. Francon, A. Fellous, A. Lennon and J. Nunez, Is thyroxine a regulatory Signal for neurotubule assembly during brain development? Nature 266:188–190 (1977)

    Article  PubMed  CAS  Google Scholar 

  59. A. Hargreaves, B. Yusta, A. Aranda, J. Avila, A. Pascual, Triiodothyronine (T3) induces neurite formation and increases synthesis of a protein related to MAP1B in cultured cells of neuronal origin, Dev. Brain Res.. 141–148 (1988)

    Google Scholar 

  60. I. Gozes, K. Sweadner, Multiple tubulin forms are expressed by a single neurone, Nature 294:477–480 (1981)

    Article  PubMed  CAS  Google Scholar 

  61. R. Cumming, R.D. Burgoyne, N.A. Lytton, Axonal sub-populations in the central nervous system demonstrated using monoclonal antibodies against a-Tubulin, Eur. J. of Cell Bio. 31:241–248 (1983)

    CAS  Google Scholar 

  62. J.N. Wilcox, C.E. Gee, J.L. Roberts, In situ cDNA:mRNA hybridization: development of a technique to measure iriRNA levels in individual cells, Meth. in Enzym. 124:510–533 (1986)

    Article  CAS  Google Scholar 

  63. S.A. Stein, D.R. Shariklin, A. Taurog, M.G. Roth, L. Krulich, C.M. Chubb, P.M. Adams, Evaluation and characterization of the hyt/hyt hypothyroid mouse II: abnormalities of TSH and the thyroid gland, Neuroendocrinology (in press) (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Stein, S.A., Shanklin, D.R., Adams, P.M., Mihailoff, G.M., Palnitkar, M.B., Anderson, B. (1989). Thyroid Hormone Regulation of Specific mRNAS in the Developing Brain. In: DeLong, G.R., Robbins, J., Condliffe, P.G. (eds) Iodine and the Brain. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0765-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0765-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8071-2

  • Online ISBN: 978-1-4613-0765-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics