Skip to main content

A Neural Thyroid Hormone Receptor Gene

  • Chapter
Iodine and the Brain

Abstract

One of the prominent questions surrounding tissue-specific gene activation is how a single hormone type such as thyroxine can have such diverse physiological effects. Generally, two mechanisms contribute to the particular variety of proteins synthesized either during development or in response to required physiological changes. On the one hand, specific DNA tertiary structure induced by associated nuclear proteins probably presets the transcriptional activity of target cell gene networks (1). An additional constraint is likely provided by hormones or growth factors mediating changing gene expression patterns (2). Each cell produces distinct receptor proteins which determine the effective response to hormonal stimulation. In this manner, both the ontogenetic history of a particular cell type and the hormone receptor field, or its distribution in specific cell types, limit the scope of induced proteins during animal development and homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Emerson, B. M., Lewis, C. D., and Felsenfeld, G. (1985). Interaction of specific nuclear factors with the nuclease-hypersensitive region of the chicken adult β-globin gene: nature of the binding domain. Cell 41: 21 – 30

    CAS  Google Scholar 

  2. Yamamoto, K. R. and Alberts, B. M. (1976). Steroid receptors: elements for modulation of eukaryotic transcription. Ann. Rev. Biochem. 45: 721 – 746

    Article  PubMed  CAS  Google Scholar 

  3. Rousseau, G. G. (1975). Interaction of steroids with hepatoma cell: molecular mechanisms of steroid hormone action. J. Steroid Biochem. 6: 75 – 89

    Article  PubMed  CAS  Google Scholar 

  4. Oppenheimer, J. H., Schwartz, H. L., Mariash, C. N., Winlaw, W. B., Wong, N. C. W., and Freake, H. C. (1987). Advances in our understanding of thyroid hormone action at the cellular level. Endocrine Reviews 8: 288 – 308

    Article  PubMed  CAS  Google Scholar 

  5. Hollenberg, S. ML, Giguere, V., Segui, P., and Evans, R. M. (1987). Colocalization of DNA-binding and transcriptional activation functions in the human glucocortiocoid receptor. Cell 49: 39 – 46

    Article  PubMed  CAS  Google Scholar 

  6. Godowski, P. J., Rusconi, S., Miesfeld, R., and Yamamoto, K. R. (1987). Glucocorticoid receptor mutants that are constitutive activators of transcriptional enhancement. Nature 325: 365 – 368

    Article  PubMed  CAS  Google Scholar 

  7. Kumar, V., Green, S., Stack, G., Berry, M., Jin, J.-R., and Chambon, P. (1987). Functional domains of the human estrogen receptor. Cell 51: 941 – 951.

    Article  PubMed  CAS  Google Scholar 

  8. Shapiro, L. E., Samuels, H. H., and Yaffe, B. M. (1978). Thyroid and glucocorticoid hormones synergistically control growth hormone mRNA in cultured GHj cells. Proc. Natl. Acad. Sci. USA 75: 45 – 49.

    Article  PubMed  CAS  Google Scholar 

  9. Spindler, S. R., Mellon, S. H., and Baxter, J. D. (1982). Growth hormone gene transcription is regulated by thyroid and glucocorticoid hormones in cultured rat pituitary tumor cells. J. Biol. Chem. 257: 11627 – 11632.

    PubMed  CAS  Google Scholar 

  10. Evans, R. M., Birnberg, N. C, and Rosenfeld, M. G. (1982). Glucocorticoid and thyroid hormones transcriptionally regulate growth hormone gene expression. Proc. Natl. Acad. Sci. USA 79: 7659 – 7663.

    Article  PubMed  CAS  Google Scholar 

  11. Oppenheimer, J. H. and Samuels, H. H., eds. (1983). “Molecular Basis of Thyroid Hormone Action,” Academic Press, New York.

    Google Scholar 

  12. Dussault, J. H. and Ruel, J. (1987). Thyroid hormones and brain development. Ann. Rev. Physiol. 49: 321 – 334.

    Article  CAS  Google Scholar 

  13. Prange, A. J., Wilson, K., Rubin, A. and Lipton, M. A. (1969). Enhancement of imipramine antidepressant activity by thyroid hormones. Am. J. Psychiat. 121: 457 – 469.

    Google Scholar 

  14. Schadlow, A. R., Surks, M. I., Schwartz, H. L., and Oppenheimer, J. H. (1972). Specific triiodothyronine binding sites in the anterior pituitary of the rat. Science 176: 1252 – 1254.

    Article  PubMed  CAS  Google Scholar 

  15. Oppenheimer, J. H., Koerner, D., Schwartz, H. L., and Surks, M. I. (1972). Specific nuclear triiodothyronine binding sites in rat liver and kidney. J. Clin. Endocrinol. Metab. 35: 330 – 333.

    Article  PubMed  CAS  Google Scholar 

  16. Samuels, H. H. and Tsai, J. S. (1973). Thyroid hormone action in cell culture: demonstration of nuclear receptors in intact cells and isolated nuclei. Proc. Natl. Acad. Sci. USA 70: 3488 – 3492.

    Article  PubMed  CAS  Google Scholar 

  17. De Groot, L. J., Refetoff, S., Strausser, J., and Barsano, C. (1974). Nuclear triiodothyronine-binding protein: partial characterization and binding to chromatin. Proc. Natl. Acad. Sci. USA 71: 4042 – 4046

    Article  Google Scholar 

  18. Latham, K. R., Ring, J. C., and Baxter, J. D. (1976). Solubilized nuclear “receptors” for thyroid hormones. J. Biol. Chem. 251: 7388 – 7397

    PubMed  CAS  Google Scholar 

  19. Nikodem, V. M., Cheng, S.-Y., and Rail, J. E. (1980). Affinity labeling of rat liver thyroid hormone nuclear receptor. Proc. Natl. Acad. Sci. USA 77: 7064 – 7068.

    Article  PubMed  CAS  Google Scholar 

  20. Pascual, A., Casanova, J., and Samuels, H. H. (1982). Photoaffinity labeling of thyroid hormone nuclear receptors in intact cells. J. Biol. Chem. 257: 9640 – 9647

    PubMed  CAS  Google Scholar 

  21. Weinberger, C., Hollenberg, S. M., Rosenfeld, M. G., and Evans, R. M. (1985). Domain structure of the human glucocorticoid receptor and its relationship to the v-erb-A oncogene product. Nature 318: 670 – 672.

    Article  PubMed  CAS  Google Scholar 

  22. Green, S., Walter, P., Kumar, V., Krust, A., Bonert, J. M., Argos, P., and Chambon, P. (1986). Human estrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 320: 134 – 139.

    Article  PubMed  CAS  Google Scholar 

  23. Jeltsch, J. M., Krozowski, Z., Quirin- Stricher, C., Gronemeyer, H., Simpson, R. J., Gamier, J. M., Krust, A. Jacob, F., and Chambon, P. (1986). Cloning of the chicken progesterone receptor. Proc. Natl. Acad. Sci. USA 83: 5424 – 5428.

    Article  PubMed  CAS  Google Scholar 

  24. Conneely, O. M., Sullivan, W. P., Toft, D. O., Birnbaumer, M., Cook, R. G., Maxwell, B. L., Zarucki-Schulz, Greene, G. L., Schrader, W. T., and O’Malley, B. W. (1986). Molecular cloning of the chicken progesterone receptor. Science 233: 767-770.

    Article  PubMed  CAS  Google Scholar 

  25. Frykberg, L., Palmieri, S., Beug, H., Graf, T., Hayman, M. J., and Vennstrom, B. (1983). Transforming capacities of avian erythroblastosis virus mutants deleted in the erbA or erbB oncogenes. Cell 32: 227 – 238.

    Article  PubMed  CAS  Google Scholar 

  26. Sap, J., Munoz, A., Damm, K., Goldberg, Y., Ghysdael, J., Leutz, A., Beug, H., and Vennstrom, B. (1986). The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324: 635 – 640.

    Article  PubMed  CAS  Google Scholar 

  27. Weinberger, C., Thompson, C. C., Ong, E. S., Lebo, R., Gruol, D. J., and Evans, R. M. (1986). The c-erb-A gene encodes a thyroid hormone receptor. Nature 324: 641 - 646.

    Article  PubMed  CAS  Google Scholar 

  28. Glass, C. K., Franco, R., Weinberger, C., Albert, V., Evans, R. M., and Rosenfeld, M. G. (1987). A c-erb-A binding site in the rat growth hormone gene mediates transactivation by thyroid hormone. Nature 329: 738 – 741.

    Article  PubMed  CAS  Google Scholar 

  29. Jansson, M. Philipson, L., and Vennstrom, B. (1983). Isolation and characterization of multiple human genes homologous to the oncogenes of avian erythroblastosis virus. EMBO J. 2: 561-565.

    PubMed  CAS  Google Scholar 

  30. Spurr, N. K., Solomon, E., Jansson, M., Sheer, D., Goodfellow, P. N., Bodmer, W. F., and Vennstrom, B. (1984). Chromosomal localisation of the human homologues of the oncogenes erbA and B. EMBO J. 3: 159 – 163.

    PubMed  CAS  Google Scholar 

  31. Thompson, C. C., Weinberger, C., Lebo, R., and Evans, R. M. (1987). Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. Science 237: 1610 – 1614.

    Article  PubMed  CAS  Google Scholar 

  32. Benbrook, D. and Pfahl, M. (1987). A novel thyroid hormone receptor encoded by a cDNA clone from a human testis library. Science 238: 788 – 791.

    Article  PubMed  CAS  Google Scholar 

  33. Giguere, V., Hollenberg, S. M., Rosenfeld, M. G., and Evans, R. M. (1986). Functional domains of the human glucocorticoid receptor. Cell 46: 645 – 652.

    Article  PubMed  CAS  Google Scholar 

  34. Rusconi, S. and Yamamoto, K. R. (1987). Functional dissection of the hormone and DNA binding activities of the glucocorticoid receptor. EMBOJ. 6: 1309 – 1315.

    CAS  Google Scholar 

  35. Munoz, A., Zenke, M., Gehring, U., Sap, J., Beug, H., and Vennstrom, B. (1988). Characterization of the hormone-binding domain of the chicken/thyroid hormone receptor protein. EMBO J. 7: 155 - 159.

    PubMed  CAS  Google Scholar 

  36. Koerner, D., Surks, M. I., and Oppenheimer, J. H. (1974). In vitro demonstration of specific triiodothyronine binding sites in rat liver nuclei. J. Clin. Endocrinol. Metab. 38: 706-709.

    Article  PubMed  CAS  Google Scholar 

  37. Spindler, B. J., MacLeod, K. M., Ring, J., and Baxter, J. D. (1975). Thyroid hormone receptors: binding characteristics and lack of hormonal dependenct for nuclear localization. J. Biol. Chem. 250: 4113 – 4119.

    PubMed  CAS  Google Scholar 

  38. Young, W. S., III, Bonner, T. I., Brann, M. R. (1986). Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain. Proc. Natl. Acad. Sci. USA 83: 9827-9831

    Article  PubMed  CAS  Google Scholar 

  39. Ismail-Beigi, F. and Edelman, I. S. (1971). The mechanism of calorigenic action of thyroid hormone: stimulation of Na+ and K+-activated adenosine triphosphatase activity. J. Gen. Physiol. 57: 710 – 722.

    Article  PubMed  CAS  Google Scholar 

  40. Dratman, M., Futaesaku, Y., Crutchfield, F. L., Berman, N., Payne, B., Sar, M., and Stumpf, W. E. (1982). Iodine-125-labeled triiodothyronine in rat brain: evidence for localization in discrete neural systems. Science 215: 309 – 312.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Weinberger, C., Bradley, D.J., Brady, L.S., Thompson, C.C., Evans, R.M. (1989). A Neural Thyroid Hormone Receptor Gene. In: DeLong, G.R., Robbins, J., Condliffe, P.G. (eds) Iodine and the Brain. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0765-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0765-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8071-2

  • Online ISBN: 978-1-4613-0765-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics