Thermal Properties of Mullite-Cordierite Composites

  • Stephen C. Beecher
  • Ryan E. Giedd
  • David G. Onn
  • Richard M. Anderson
  • John B. Wachtman

Abstract

The thermal conductivity and specific heat of mullite-cordierite composites have been measured in the temperature range 90 K to 420 K. The sound velocity, as determined from a fit to the specific heat data, agrees well with velocities determined from mechanical measurements. The temperature and composition dependence of the phonon mean free path is established. The thermal conductivity as a function of composition passes through a minimum for the mullite-rich compositions due to a minimum in the upper limit of the phonon mean free path. Solid solution formation is a possible cause.

Keywords

Posites Sapphire Poss Cordierite Berman 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. P. Davis and W. C. Hackler, Correlation Between Physical Properties and Thermochemical Reactions in a Mullite-Cordierite Composition, Bil. Am. Cer. Soc., Vol. 40, 6: 362 (1961).Google Scholar
  2. B. H. Mussler and M. W. Shafer, Preparation and Properties of Mullite- Cordierite Composites, Bul. Am. Cer. Soc. Vol. 63, 5: 705–710, 714 (1984).Google Scholar
  3. R. M. Anderson, Cordierite-Mullite Composites: A Study of Their Mechanical, Thermal and Dielectric Properties, Ph.D. Thesis, Rutgers University (1987).Google Scholar
  4. R.M. Anderson, R. Gerhardt, JB. Wachtman, DG. Onn, and SC. Beecher, Proc. International Symposium “Ceramic Substrates and Packages”, Denver, CO, Oct. 1987 (in press).Google Scholar
  5. H. C. Graham and N. M. Tallan, Polycrystalline Insulators, in: “Physics of Electronic Ceramics,” L. L. Hench and D. B. Dove, ed., M. Dekker, New York (1982).Google Scholar
  6. R. Kamo and W. Bryzik, Cummins/Tacom Advanced Adiabatic Engine, Ceram. Eng. Sei. Pro., 5 (5–6): 312 (1984).Google Scholar
  7. R. Berman, “Thermal Conduction in Solids,” Clarendon Press, Oxford (1978).Google Scholar
  8. M. G. Woods, W. F. Mandler and T. L. Scofield, Designing Ceramic Insulated Components for the Adiabatic Engine, Am. Ceram. Soc. Bui., 64 (2): 287 (1985).Google Scholar
  9. 9.
    R. E. Giedd and D. G. Onn, Electronic Flash: A Rapid Method for Measuring the Thermal Conductivity and Specific Heat of Dielectric Materials, to be published in these proceedings.Google Scholar
  10. R. B. Dinwiddie, A. J. Whittaker and D. G. Onn, A Rapid Screening Thermal Conductivity Comparator, Talk Summaries 1987 Electronics Division American Ceramics Society Annual Meeting.Google Scholar
  11. E. S. R. Gopal, “Specific Heats at Low Temperatures,” Plenum Press, New York (1966).Google Scholar
  12. C. Kittel, “Introduction to Solid State Physics,” 6th Edition, Wiley, New York (1986).Google Scholar
  13. W. D. Kingery, H. K. Bowen and D. R. Uhlman, “Introduction to Ceramics,” 2nd Edition, Wiley, New York (1976).Google Scholar

Copyright information

© Purdue Research Foundation 1989

Authors and Affiliations

  • Stephen C. Beecher
    • 1
  • Ryan E. Giedd
    • 1
  • David G. Onn
    • 2
  • Richard M. Anderson
    • 3
  • John B. Wachtman
    • 3
  1. 1.Applied Thermal Physics Laboratory (ATPL) Department of Physics and AstronomyUniversity of DelawareNewarkUSA
  2. 2.Center for Advanced StudyUniversity of DelawareUSA
  3. 3.Center for Ceramics ResearchRutgers UniversityPiscatawayUSA

Personalised recommendations