Advertisement

Dopamine Receptors And Signal Transduction

  • R. G. MacKenzie
  • J. W. Kebabian
Chapter

Abstract

Dopamine receptors can be (and have been) identified on the basis of behavioral or physiological responses (such as turning behavior, supression of prolactin release or renal vasodilatation). However, by studying the signal transduction mechanisms used by the dopamine receptors, especially valuable insight into the identification and the classification of these receptors have been gathered. Thus, the dopamine-sensitive adenylate cyclase has proven to be a valuable model of the entity now known as the D-l receptor (Kebabian et al., 1972). Furthermore, the now widely-accepted idea that there are two classes of dopamine receptor was based, in part, on the observation that certain drugs displayed inappropriate activity in the dopamine-sensitive adenylate cyclase assay (Kebabian and Calne, 1979).

Keywords

Dopamine Receptor Adenylate Cyclase Pertussis Toxin Adenylate Cyclase Activity Prolactin Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilera, G., Hyde, C.L. and Catt, K.J. (1982) Angiotensin II receptors and prolactin release in pituitary lactotrophs. Endocrinology 111:1045–1050PubMedCrossRefGoogle Scholar
  2. Anderson, J.M., Yasumoto, T. and Cronin, M.J. Intracellular free calcium in rat anterior pituitary cells monitored by fura-2. Life Sci. 41:519–526 (1987)PubMedCrossRefGoogle Scholar
  3. Arnt, J. (1985) Behavioural stimulation is induced by separate dopamine Dj and D2receptor sites in reserpine-pretreated but not in normal rats. Eur. J. Pharmacol. 113:79–88PubMedCrossRefGoogle Scholar
  4. Attie, M.E, Brown, E.M., Gardner, D.G., Spiegel, A.M. and Aurbach, G.D. (1980) Characterization of the dopamine-responsive adenylate cyclase of bovine parathyroid cells and its relationship to parathyroid secretion. Endocrinology 107:1776–1781PubMedCrossRefGoogle Scholar
  5. Battaglia, G., Norman, A.B., Hess, E.J. and Creese I. D2dopamine receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in rat striatum. Neuiosci. Lett. 59:177–182 (1985)CrossRefGoogle Scholar
  6. Berridge, M.J. Inositol trisphosphate and diacyglycerol as second messengers. Biochem. J. 220:345–360 (1984)PubMedGoogle Scholar
  7. Billard, W., Ruperto, V., Crosby, G., Iorio, L.C. and Barnett, A. (1984) Characterization of the binding of 3H-SCH 23390, a selective Dlreceptor antagonist ligand, in rat striatum. Life Sci. 35:1885–1893PubMedCrossRefGoogle Scholar
  8. Birnbaumer, L., Codina, J., Mattera, R., Yatani A., Scherer, N., Toro, M.-J. and Brown, A.M. Signal transduction by G proteins. Kidney Internatl. 32: S14–S37 (1987)Google Scholar
  9. Brown, E.M. and Aurbach, G.D. (1980) Role of cyclic nucleotides in secretory mechanisms and actions of parathyroid hormone and calcitonin. Vitam. Horm. 38:205–256PubMedCrossRefGoogle Scholar
  10. Brown, J.H. and Makman, M.H. (1972) Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3′:5′-cyclic monophosphate formation in intact retina. Proc Natl Acad Sci USA 69:539–543PubMedCrossRefGoogle Scholar
  11. Canonico, P.L., Valdenegio, C.A. and MacLeod, R.M. Dopamine inhibits32Pi incorporation into phos phatidylinositol in the anterior pituitary gland of the rat. Endocrinology 111:347–349 (1982)PubMedCrossRefGoogle Scholar
  12. Canonico, PL., Jar vis, W.D., Judd, A.M. and MacLeod, R.M. Dopamine does not attenuate phosphoinositide hydrolysis in rat anterior pituitary cells. J. Endocrinol. 110:389–393 (1986)PubMedCrossRefGoogle Scholar
  13. Chen, T.C., Cote, T.E. and Kebabian, J.W. (1980) Endogenous components of the striatum confer dopamine-sensitivity upon adenylate cyclase activity: the role of endogenous guanyl nucleotides. Brain Res 181:139–149PubMedCrossRefGoogle Scholar
  14. Clement-Cormier Y.C., Parrish, R.G., Petzold, G.L., Kebabian, J.W., and Greengard, P. (1975) Characterization of a dopamine-sensitive adenylate cyclase in the rat caudate nucleus. J. Neurochem. 25:143–149PubMedCrossRefGoogle Scholar
  15. Cooper, D.M.F., Bier-Laning, C.M., Halford, M.K., Alijanian, M.K. and Zahniser, N.R. Dopamine, acting "through D2receptors, inhibits rat striatal adenylate cyclase by a GTP-dependent process. Mol. Pharmacol. 29:113–119 (1986)PubMedGoogle Scholar
  16. Cote, T.E., Grewe, C.W., Tsuruta, K., Stoof, J.C., Eskay, R.L. and Kebabian, J.W. D2dopamine receptor-mediated inhibition of adenylate cyclase activity in the intermediate lobe of the rat pituitary gland requires guanosine 5′-triphophosphate. Endocrinology 110:812–819 (1982)PubMedCrossRefGoogle Scholar
  17. Cote, T.E., Grewe, C.W. and Kebabian, J.W. Stimulation of a D2 dopamine receptor in the intermediate lobe of the rat pituitary gland decreases the responsiveness of the beta-adienoceptor: Biochemical mechanism. Endocrinology 108:420–426 (1981)PubMedCrossRefGoogle Scholar
  18. Cronin, M.J. and Thorner, M.D. Dopamine and bromocriptine inhibit cyclic AMP accumulation in the anterior pituitary: The effect of cholera toxin. J. Cyc. Nuc. Res. 8:267–275 (1982)Google Scholar
  19. Cronin, M.J., Myers, G.A., MacLeod, R.M. and Hewlett, E.L. Pertussis toxin uncouples dopamine agonist inhibition of prolactin releaes. Am. J. Physiol. 244: E499–E504 (1983)PubMedGoogle Scholar
  20. Dannies, P.S. and Rudnick, M.S. 2-Bromo-alpha-ergocryptine causes degradation of prolactin in primary cultures of rat pituitary cells after chronic treatment. J. Biol. Chem. 255:2776–2781 (1980)PubMedGoogle Scholar
  21. Delbeke, D. and Dannies, P.S. Stimulation of the adenosine 3′,5′′monophosphate and the Ca2+messenger systems together reverse dopaminergic inhibition of prolactin release. Endocrinology 117:439–446 (1985)PubMedCrossRefGoogle Scholar
  22. Delbeke, D., Kojima, I., Dannies, P.S. and Rasmussen, H. Synergistic stimulation of prolactin release by Phorbol ester, A23187 and forskolin. Biochem. Biophys. Res. Comm. 123:735–741 (1984)PubMedCrossRefGoogle Scholar
  23. Douglas, W.W. and Taraskevich, P.S. The elctrophysiology of adenohypophyseal cells. In: A.M. Poisner and J.M. Trifaro (eds.) The Electrophysiology of the Secretory Cell: ITie Secretory Process, Vol II, Elsevier Sciene Publishers, New York, 63–92 (1985)Google Scholar
  24. Dowling, J.E. and Watling, K.J. (1981) Dopaminergic mechanisms in the teleost retina. II. Factors affecting the accumulation of cyclic AMP in pieces of intact carp retina. J. Neurochem. 36: 569–579PubMedCrossRefGoogle Scholar
  25. Enjalbert, A., Sladeczek, F., Guillon, G., Bertrand, P., Shu, C., Epelbaum, J., Garcia–Sainz, A., Jard, S., Lombard, C., Kordon, C. and Bockaert, J. Angiotensin II and dopamine modulate both cAMP and inositol phosphate productions in anterior pituitary cells J. Biol. Chem. 262:4071–4075 (1986)Google Scholar
  26. Enjalbert, A. and Bockaert, J. Pharmacological characterization of the D2 dopamine receptor negatively coupled with adenylate cyclase in rat anterior pituitary. Mol. Pharmacol. 23:576–584 (1983)PubMedGoogle Scholar
  27. Fujiwara, H., Kato, N., Shuntoh, H. and Tanaka, C. D2-dopamine receptor-mediated inhibition of intracellular Ca2+mobilization and release of acetlcholine from guinea-pig neostriatal slices. Br. J. Pharmac. 91:287–297 (1987)Google Scholar
  28. Goldberg, L.I., Glock, D., Kohli, J.D. and Barnett, A. (1984) Separation of peripheral dopamine receptors by a selective DA1 antagonist, SCH 23390. Hypertension 6(2 Pt 2): 25–30Google Scholar
  29. Grace, A.A. and Bunney, B.S. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons — 1. Identification and characterization. Neuroscience 10:310–315 (1983)Google Scholar
  30. Grace, A.A. and Bunney, B.S. Low doses of apomorphine elicit two opposing influences on dopamine cell electrophysiology. Brain Res. 333:285–298 (1985)PubMedCrossRefGoogle Scholar
  31. Ingram, C.D., Bicknell, R.J. and Mason, W.T. Intracellular recordings from bovine anterior pituitary cells: Modulation of spontaneous activity by regulators of prolactin secretion. Endocrinology 119:2508–2518(1986)PubMedCrossRefGoogle Scholar
  32. Innis, R.B. and Aghajanian, G.K. Pertussis toxin blocks autoreceptor–mediated inhibition of dopaminergic neurons in rat substantia nigra. Brain Res. 411:139–143 (1987)PubMedCrossRefGoogle Scholar
  33. Iorio, L.C., Barnett, A., Leitz, F.H., Houser V.P., Korduba, C.A. (1983) SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J. Pharmacol. Exp. Ther. 226:462–468PubMedGoogle Scholar
  34. Journot, L., Homburger, V., Pantaloni, C., Priam, M., Bockaert, J. and Enjalbert, A. An islet activation protein-sensitive G protein is involved in dopamine inhibition of angiotensin and thyrotropin-releasing hormone-stimulated inositol phosphate production in anterior pituitary cells. J. Biol. Chem. 262:15106–15110(1987)PubMedGoogle Scholar
  35. Judd, A.M., Login, I.S. and MacLeod, R.M. Dopamine inhibits prolactin release and cAMP generation in the MMQ cell, a homogeneous prolactin-secreting cell line. Society for Neuroscience Abstract 13:192 (1987)Google Scholar
  36. Kebabian, J.W. and Calne, D.B. (1979) Multiple receptors for dopamine. Nature 277:93–96PubMedCrossRefGoogle Scholar
  37. Kebabian, J.W., Petzold, G.L., and Greengard P. (1972) Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor”. Proc. Natl. Acad. Sci. USA 69:2145–2149PubMedCrossRefGoogle Scholar
  38. Koch, B.D. and Schonbrunn, A. Characterization of the cyclic AMP–independent actions of somatostatin in GH cells. J. Biol. Chem. 263:226–234 (1988)PubMedGoogle Scholar
  39. Lacey, M.G., Mercuri, N.B and North R.A. Dopamine acts on D2receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta. J. Physiol. 392:397–416 (1987)PubMedGoogle Scholar
  40. Malgaroli, A., Vallar, L., Elahi, F.R., Pozzan, T., Spada, A. and Meldolesi, J. Dopamine inhibits cytosolic Ca2+ increase in rat lactotroph cells. J. Biol. Chem. 262:13920–13927 (1987)PubMedGoogle Scholar
  41. Maurer, R.A. Dopaminergic inhibition of prolactin synthesis and prolactin messenger RNA accumulation in cultured pituitary cells. J. Biol. Chem. 255:8092–8097 (1980)PubMedGoogle Scholar
  42. Miyazaki, K., Dambrosia, J.M. Kebabian, J.W. Dopaminergic modulation of the diethylstilbestrol–induced proliferation of the anterior pituitary gland of the Fisher 344 rat. Neuroendocrinology 41:405–408 (1985)PubMedCrossRefGoogle Scholar
  43. Miyazaki, K., Goldman, M.E. and Kebabian, J.W. Forskolin stimulates adenylate cyclase activity, adenosine, 3′,5′-monophosphate production and peptide release from the intermediate lobe of the rat pituitary gland. Endocrinology 114:761–766 (1984)PubMedCrossRefGoogle Scholar
  44. Nishizuka, Y. Turnover of inositol phospholipids and signal transduction. Science 225:1365–1370 (1984)PubMedCrossRefGoogle Scholar
  45. Onali, P., Schwartz, J.P. and Costa, E. Dopaminergic modulation of adenylate cyclase stimulation by vasoactive intestinal peptide in anterior pituitary. Proc. Natl. Acad. Sci. USA 78:6531–6534 (1981)PubMedCrossRefGoogle Scholar
  46. Onali, P., Olianas M.C. and Gessa G.L. Characterization of dopamine receptors, mediating inhibition of adenylate cyclase activity in rat striatum. Mol. Pharmacol. 28:138–145 (1985)PubMedGoogle Scholar
  47. Pizzi, M., D’agostini, F., DaPreda, M., Spano, P. F. and Haefely, W.E. Dopamine D2 receptor stimulation decreases the inositol trisphosphate level of rat striatal slices. Eur. J. Pharmacol. 136:263–264 (1987)PubMedCrossRefGoogle Scholar
  48. Rasmussen, H., Apfeldorf, W., Barrett, P., Takuwa, N., Zawalich, W., Kreutter, D., Park, S. and Takuwa, Y. Inositol Lipids: Integration of cellular signalling systems. In: J.W. Putney (ed). Phosphoinositides and Receptor Mechanisms. Receptor Biochemistry and Methodology Series: Vol. 7, 109–147 (1986)Google Scholar
  49. Rodbell, M. (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284:17–22PubMedCrossRefGoogle Scholar
  50. Schettini, G., Cronin, M.J. and MacLeon R.M. Adenosine 3′,5′-monophosphate (cAMP) and calcium-cal-modulin interrelation in the control of prolactin secretion: Evidence of dopamine inhibition of cAMP accumulation in prolactin release after calcium mobilization. Endocrinology 112:1801–1807 (1983)PubMedCrossRefGoogle Scholar
  51. Schultz, P.J., Sedor, J.R. and Abboud, H.E. (1987) Dopaminergic stimulation of cAMP accumulation on cultured rat mesangial cells. Am. J. Physiol 253 (Heart Circ. Physiol 22) H358H–H364Google Scholar
  52. Sidhu, A., van Oene, J.C., Danridge P., Kaiser, C. and Kebabian, J.W. (1986) [125I]SCH 23982: the ligand of choice for identifying the D1 dopamine receptor. Eur. J. Pharmacol. 128:213–220PubMedCrossRefGoogle Scholar
  53. Simmonds, S.H., Strange, P.G. Inhibition of inositol phospholipid breakdown by D2dopamine receptors in dissociated bovine anterior pituitary cells. Neurosci. Lett. 60:267–272 (1985)PubMedCrossRefGoogle Scholar
  54. Stoof, J.C. and Kebabian J.W. Independent in vitro regulation by the D2dopamine receptor of dopamine-stimulated efflux of cyclic AMP and K+-stimulated release of acetylcholine from rat neostriatum. Brain Res. 250:263–270 (1982)PubMedCrossRefGoogle Scholar
  55. Swennen, L. and Denef, C. Physiological concentrations of dopamine decrease adenosine 3′,5′-monophosphate levels in cultured rat anterior pituitary cells and enriched populations of lactotrophs: Evidence for a causal relationship to inhibition of prolactin release. Endocrinology 111:398–405 (1982)PubMedCrossRefGoogle Scholar
  56. Trugman, J.M. and Wooten, G.E (1987) Selective D1 and D2dopamine agonists differentially alter basal ganglia glucose utilization in rats with unilaterial 6-hydroxydopamine substantia nigra lesions. J. Neurosci. 7:2927–2935PubMedGoogle Scholar
  57. Weiss, S., Sebben, M., Garcia-Sainz J.A., and Bockaert J. D2-dopamine receptor-mediated inhibition of cyclic AMP formation in striatal neurons in primary culture. Mol. Pharacol. 27:595–599 (1985)Google Scholar
  58. Winiger, B.P, Wuarin, F., Zahnd, G.R., Wollheim, C.B. and Schlegel, W. Single cell monitoring of cytosolic calcium reveals subtypes of rat lactotrophs with distinct responses to dopamine and thyrotropin-releasing hormone. Endocrinology 121:2222–22228 (1987)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • R. G. MacKenzie
    • 1
  • J. W. Kebabian
    • 1
  1. 1.Abbott LaboratoriesUSA

Personalised recommendations