Anatomical And Pharmacological Comparisons Between Dopamine D-1 And D-2 Receptors In Mammalian Cns

  • Eric K. Richfield
  • Anne B. Young
  • John B. Penney


The dopamine neurotransmitter system has been of interest to neuroscientists since its discovery in the central nervous system (CNS) in the 1960s using catecholamine histofluroescence techniques (Dahlström and Fuxe, 1964, 1965). A variety of subsequent research techniques, including receptor autoradiography, have been developed and their application to the study of the dopamine (DA) system has provided us with significant information about how DA functions in normal and pathological conditions.


Cerebral Cortex Basal Ganglion Dopamine Receptor Ventral Tegmental Area Glyoxylic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altar, C.A., O’Neil, S., Walter, R.J., Marshall, J.F. (1985) Dopamine and serotonin receptor sites revealed by digital subtraction autoradiography. Science 228: 597–600.PubMedCrossRefGoogle Scholar
  2. Berger, B., Trottier, S., Gaspar, P., Verney, C., and Alvarez, C. (1986) Major dopamine innervation of the cortical motor areas in the Cynomolgus monkey. A radioautographic study with comparative assessment of serotonergic afferents. Neurosc. Lett. 72:121–127.CrossRefGoogle Scholar
  3. Berger, B., Thierry, A.M., Tassin, J. P. and Moyne, M. A. (1976) Dopaminergic innervation of the rat prefrontal cortex: A fluorescence histochemical study. Brain Res. 106:133–145.PubMedCrossRefGoogle Scholar
  4. Björklund, A., Lindvall, O., Nobin, A. (1975) Evidence of an incertohypothalamic dopamine neurone system in the rat brain. Brain Res. 89:29–42.PubMedCrossRefGoogle Scholar
  5. Björklund, A. and Lindvall, O. (1984) Dopamine-containing systems in CNS. In, Björklund, A. and Hökfelt, T. (eds). Handbook of Chemical Neuroanatomy, Vol. 2: Classical Transmitter in the CNS, Part I. New York: Elsevier Sciences Publishers.Google Scholar
  6. Boyson, S.J., McGonigle, P., and Molinoff, P.B. (1986) Quantitative autoradiographic localization of the D1and D2 subtypes of dopamine receptors in rat brain. J. Neurosci. 6:3177–3188.PubMedGoogle Scholar
  7. Bouthenet, M.L., Matres, M.-R, Sales, N., Schwartz, J.-C. (1987) A detailed mapping of dopamine D-2 receptors in rat central nervous system by autoradiography with [125I] iodosulpiride. Neurosciencce 20:115–155.Google Scholar
  8. Brown, R.G. and Marsden, C.D. (1984) How common is dementia in Parkinson’s disease? The Lancet i: 1262–1265.CrossRefGoogle Scholar
  9. Clement-Cormier, Y.C., Kebabian, J.W., Petzold, G.L., and Greengard, P. (1974) Dopamine-sensitive adenylate cyclase in mammalian brain: A possible action of antipsychotic drugs. Proc. Natl. Acad. Sci. USA 29:1113–1117.CrossRefGoogle Scholar
  10. Creese, I., Burt, D.R., and Snyder, S.H. (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483.PubMedCrossRefGoogle Scholar
  11. Creese, I. (1982) Dopamine receptors explained. Trends in Neurosciences 3:40–43.CrossRefGoogle Scholar
  12. Creese, I., Sibley, D.R., Hamblin, M.W., and Leff, S.E. (1983) The classification of dopamine receptors: Relationship to radioligand binding. Ann. Rev. Neurosci. 6:43–71.PubMedCrossRefGoogle Scholar
  13. Dahlström, A. and Fuxe, K. (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta. Physiol. Scand., (suppl.232), 62:1–55.Google Scholar
  14. Dahlström, A. and Fuxe, K. (1965) Evidence for the existence of monoamine-containing neurons in the central nervous system. II. Experimentally induced changes in the interneuronal amine levels of the bulbospinal neuron system. Acta. Physiol. Scand., (suppl.247), 1–36.Google Scholar
  15. Dawson, T.M., Gehlart, D.R., Yamamura, H.I., Barnett, A., and Wamsley, J.K. D-l dopamine receptors in the rat brain: Autoradiographic localization. Eur. J. Pharm., 108 (1985) 323–325.CrossRefGoogle Scholar
  16. Dawson, T.M., Gehlert, D.R., McCabe, R.T, Barnett, A. and Wamsley, J.K. (1986) D-l dopamine receptors in the rat brain: A quantitative autoradiographic analysis. J. Neurosci. 6:2352–2365.PubMedGoogle Scholar
  17. DeLean, A., Kilpatrick, B.F., Caron, M.B. (1982) Dopamine receptors of the porcine anterior pituitary gland; Evidence for two affinity states discriminated by both agonists and antagonists. Molec. Pharm. 22:290–297.PubMedGoogle Scholar
  18. Dubois, A., Savasta, M., Curet, A., and Scatton, B. (1986) Autoradiographic distribution of the D1 agonist [3H]SKF 38393, in the rat brain and spinal cord. Comparison with the distribution of D2 dopamine receptors. Neuroscience 19:125–137.PubMedCrossRefGoogle Scholar
  19. Fuxe, K., Hökfelt, T., Johansson, D., Jonsson, G., Linbrink, P., Ljungdahl, A., (1974) The origin of the dopamine nerve terminals in limbic and frontal cortex. Evidence for mesocortical-dopamine neurons. Brain Res.82:349–355.CrossRefGoogle Scholar
  20. Graybiel, A.M. and Ragsdale Jr., C.W. (1978) Histochemically distinct compartments in the striatum of human, monkey, and cat demonstrated by acetylthiocholinesterase staining. Proc. Natl. Acad. Sci. USA 75:5723–5726.PubMedCrossRefGoogle Scholar
  21. Graybiel, A.M. (1984) Correspondence between the dopamine islands and striosomes of the mammalian striatum. Neurosci. 13:1157–1187.CrossRefGoogle Scholar
  22. Greengard, P., McAfee, D.A., and Kebabian, J.W. (1972) On the mechanism of action of cyclic AMP and its role in synaptic transmission. In, Greengard, P. and Robinson, G.A. (ed) Advances in Cyclic Nucleotide Research, Vol. 1. New York: Raven PressGoogle Scholar
  23. Hancock, A.A., DeLean, A.L., Lefkowitz, R.J. (1979) Quantitative resolution of beta-adrenergic receptor subtypes by selective legand binding: Application of a computerized model fitting technique. Mol. Pharm. 16:1–9.Google Scholar
  24. Herkenham, M. and Pert, C.B. (1981) Mosaic distribution of opiate receptors, parafascicular projections and acetycholinesterase in rat striatum. Nature 291:415–418.PubMedCrossRefGoogle Scholar
  25. Hollt, V. and Schubert, P. (1978) Demonstration of neuroleptic receptor sites in mouse brain by autoradiography. Brain Res. 151:149–153.PubMedCrossRefGoogle Scholar
  26. Hornykiewicz, O. (1963) Die topische Lokalisation und das Verhalten von Noradrenalin and Dopamin (3-hy-droxy-tyramin in der Substantia nigra des normalen und parkinsonkranken Menschen. Wiener Klinische Wochenschrift 75:309–312.PubMedGoogle Scholar
  27. Iverson, L.L. Rogawski, M.A., Miller, R.J., (1976) Comparison of the effects of neuroleptic drugs on pre-and postsynaptic dopaminergic mechanisms in the rat striatum. Mol. Pharm. 12:251–262.Google Scholar
  28. Jastrow, T.R., Richfield, E., Gnegy, M.E. (1984) Quantitative autoradiography of [3H]sulpiride binding sites in rat brain. Neurosci. Lett. 51:47–53.PubMedCrossRefGoogle Scholar
  29. Joyce, J.N. and Marshall, J.F. Striatal topography of D-2 receptors correlates with indexes of cholinergic neuron localization. Neurosc. Lett, 53 (1985) 127–131.CrossRefGoogle Scholar
  30. Kebabian, J.W. and Greengard, P. (1971) Dopamine-sensitive adenyl cyclases: possible role in synaptic transmission. Science 174:1346–1349.PubMedCrossRefGoogle Scholar
  31. Kebabian, J.W. and Calne, D.B. (1979) Multiple receptors for dopamine. Nature 277:93–96.PubMedCrossRefGoogle Scholar
  32. Kebabian, J.W, Agui, T., van Oene, J.C., Shigematsu, K., and Saavedra, J.M. (1986) The D1dopamine receptor: New perspectives. Trends in Pharm. Sci. 5:96–99.CrossRefGoogle Scholar
  33. Kent, R.S., DeLean, A.L., Lefkowitz, R.J. (1979) A quantitative analysis of beta adrenergic receptor interactions: Resolution of high and low affinity states of the receptor by computer modeling of ligand binding data. Mol. Pharm. 17:14–23.Google Scholar
  34. Kuhar, M.J., Murrin, C., Malout, A.T., and Klemm, N. (1978) Dopamine receptor binding in vivo: The feasibility of autoradiographic studies. Life Sci. 22:203–210.PubMedCrossRefGoogle Scholar
  35. Lee, T., Seeman, P., Rajput, A., Farlye, I.K., and Hornykiewicz, O. (1978) Receptor basis for dopamnergic supersensitivity in Parkinson’s disease. Nature 273:59–61.PubMedCrossRefGoogle Scholar
  36. Levitt, P. and Moore, R.Y. (1978) Noradrenaline neuron innervation of the neocortex in the rat. Brain Res. 139:219–231.PubMedCrossRefGoogle Scholar
  37. Lewis, D.A., Campbell, M.J., Foote, S., Goldstein, M., Morrison, J.H. (1987) The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J. Neurosci. 7:279–290.PubMedGoogle Scholar
  38. Lindvall, O. and Bjorklund A. (1974) The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol. Scand (Suppl.) 412:1–48.Google Scholar
  39. Matres, M.-P., Bouthenet, M.-L., Sales, N., Sokoloff, P., and Schwartz, J.-C. (1985) Widespread distribution of brain dopamine receptors evidenced with [125I]iodosulpiride, a highly selective ligand. Science 228:752–755.CrossRefGoogle Scholar
  40. Moore, R.Y. and Bloom, F.E. (1978) Central catecholamine neuron systems. Ann. Rev. Neurosci. 1:129–169.PubMedCrossRefGoogle Scholar
  41. Nastuk, M.A. and Graybiel, A.M. (1985) Patterns of muscarinic cholinergic binding in the striatum and their relation to dopamine islands and striosomes. J. Comp. Neurol. 237:176–194.PubMedCrossRefGoogle Scholar
  42. Neve, K.A., Altar, A., Wong, C.A. Marshall, J.F. (1984) Quantitative analysis of [3H]spiroperidol binding to rat forebrain sections. Plasticity of neostriatal dopamine receptors after nigrostriatal injury. Brian Res. 302:9–18.CrossRefGoogle Scholar
  43. Olson, L., Seiger, A. and Fuxe, K. (1972) Heterogeneity of striatal and limbic innervation: Highly fluorescent islands in developing and adult rats. Brain Res. 44:283–288.PubMedCrossRefGoogle Scholar
  44. Parent, A. (1986) Comparative Neurobiology of the Basal Ganglia. New York: Wiley and Sons.Google Scholar
  45. Pimoule, C., Schoemaker, H., Reynolds, G.P., and Langer, S.Z. (1985) [3H]-SCH 23390 labeled D, dopamine receptors are unchanged in schizophrenia and Parkinson’s disease. Eur. J. Pharm. 114:235–237.CrossRefGoogle Scholar
  46. Richfield, E.K., Young, A.B., Penney, J.B. (1986) Properties of D-2 dopamine receptor autoradiography: High percentage of high affinity agonist sites and increased nucleotide sensitivity in tissue sections. Brain Res. 383:121–128.PubMedCrossRefGoogle Scholar
  47. Richfield, E.K., DeBowey, D., Penney, J.B., and Young, A.B. (1987a) Basal ganglia and cerebral cortical distribution of dopamine D-1 and D-2 receptors in neonatal and adult cat brain. Neurosci. Lett 73:203–208.PubMedCrossRefGoogle Scholar
  48. Richfield, E.K., DeBowey, D., Penney, J.B., and Young, A.B. (1987b) Comparative distribution of dopamine D-l and D-2 receptors in the basal ganglia of turtle, pigeon, rat, cat, and monkey. J. Comp. Neurol. (262:446–463).PubMedCrossRefGoogle Scholar
  49. Richfield, E.K., (1987c) Anatomical and pharmacological comparisons between dopamine D-l and D-2 receptors in the central nervous system. Ph.D thesis, University of Michigan, Ann Arbor, Michigan.Google Scholar
  50. Scatton, B., Rouquier, L., Javoy-Agid, F., and Agid, Y. (1982) Dopamine deficiency in the cerebral cortex in Parkinson disease. Neurology 32:1039–1040.PubMedGoogle Scholar
  51. Seeman, P. (1980) Brain dopamine receptors. Pharm. Rev. 32:229–313.PubMedGoogle Scholar
  52. Sibley, D.R., Delean, A., Creese, I. (1982) Anterior pituitary dopamine receptors: Demonstration of interconvertible high and low affinity states of the D-2 dopamine receptor. J. Biol. Chem. 257:6351–6361.PubMedGoogle Scholar
  53. Stoff, J.C. and Kebabian, J.W. (1984) Two dopamine receptors: Biochemistry, physiology, and pharmacology. Life Sci. 35:2281–2296.CrossRefGoogle Scholar
  54. Swanson, L.W. (1982) The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull. 9:321–353.PubMedCrossRefGoogle Scholar
  55. Thierry, A.M., Stinus. L., Blanc, G., and Glowinsky J. (1973) Some evidence for the existence of dopaminergic neurons in the rat cortex. Brian Res. 50:230–234.CrossRefGoogle Scholar
  56. Ungerstedt, U. (1971) Stereotaxic mapping of the monoamine pathway in the rat brain. Acta Physiol. Scand. (suppl. 367) 82:1–48.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Eric K. Richfield
    • 1
  • Anne B. Young
    • 2
  • John B. Penney
    • 2
  1. 1.Unit of Functional NeuroanatomyNational Institute of Mental Health BethesdaUSA
  2. 2.department of NeurologyUniversity of Michigan Ann ArborUSA

Personalised recommendations