Advertisement

Recent Advances In Dopaminergic Implants

  • I. J. Kopin
  • K. S. Bankiewicz
  • R. J. Plunkett
  • L. Porrino
  • D. M. Jacobowitz
  • W. T. London
  • E. H. Oldfield
Chapter
  • 91 Downloads

Abstract

The first attempts at transplanting neural tissue into brains of experimental animals began nearly 100 years ago. Initially progress was slow and halting, but during the last two decades the tremendous advances in the neurosciences have provided the necessary biochemical methods, histological techniques, and specific toxins with which to produce animal models of neurological disorders and to examine the consequences of attempts at replacing damaged neuronal systems using tissue implants. Perhaps the most spectacular and most promising advances have been related to the dopaminergic systems and Parkinson’s disease treatments.

Keywords

Substantia Nigra Dopaminergic Neuron Caudate Nucleus Local Cerebral Glucose Utilization Dopamine Receptor Supersensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andén, N.E., Dahlström, Fuxe, K., Larsson, et al., Ascending monoamine neurons to the telecephalon and diencephalon. Acta Physiol. Scand. 67:313–326, 1966.CrossRefGoogle Scholar
  2. Andén, N.E., Dahlström, Fuxe, K., et al., Functional role of the nigrostriatal dopamine neurons. Acta Pharmacol. 24:263–274, 1966.CrossRefGoogle Scholar
  3. Backlund, E.O., Granberg, P.O., Hamberger, B., et al., Transplantation of adrenal medullary tissue to striatum in parkinsonism. J. Neurosurg. 62:169–173, 1985.PubMedCrossRefGoogle Scholar
  4. Bankiewicz, K.S., Oldfield, E.H., Chiueh, C.C., et al., Hemiparkinsonism in monkeys after unilateral internal carotid artery infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MTP), Life Sci, 39:7–16, 1986.PubMedCrossRefGoogle Scholar
  5. Bankiewicz, K.S., Plunkett, R.J., Kopin, I.J., et al., Transient and long term functional improvement by adrenal and fetal mesencephalic implants into caudate nuclei of MPTP parkinsonian monkeys, presented at: Schmitt Neurological Sciences Symposium, Rochester, New York, 1987.Google Scholar
  6. Björklund, A., Dunnett, S., Stenevi, et al., Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res. 199:307–333, 1980a.PubMedCrossRefGoogle Scholar
  7. Björklund, A., Schmidt, R., and Stenevi, U., Functional reinnervation of the neostriatum in the adult rat by use of intraparenchymal grafting of dissociated cell suspensions from the substantia nigra. Cell Tissue Res. 212:39–45, 1980b.PubMedCrossRefGoogle Scholar
  8. Bohn, M.C., Cupit, L., Marciano, F. and Gash D.M., Adrenal medulla grafts enhance recovery of striatal dopaminergic fibers. Science 237:913–915, 1987.PubMedCrossRefGoogle Scholar
  9. Burns, R.S., Chiueh, C.C., Markey, S.P, et al., A primate model for parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetra-hy-dropyridine, Proc. Natl. Acad. Sci. 80:4546–4550, 1983.PubMedCrossRefGoogle Scholar
  10. Davis, G.C., Williams, A.C., Markey, S.P, et al., Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res. 1:249–54, 1979.PubMedCrossRefGoogle Scholar
  11. Fletcher H., McDowell, M.D., and Markham, C.H., (Eds.) Recent Advances in Parkinson’s Disease, Contemporary Neurology Series, F.A. Davis, Company, Philadelphia, Pennsylvania, 1971.Google Scholar
  12. Freed, W.J., Perlow, M.J., Karoum, F., et al., Restoration of dopaminergic function by grafting of fetal rat substantia nigra to the caudate nucleus: long-term behavioral, biochemical and histochemical studies. Ann. Neurol. 8:510–519, 1980.PubMedCrossRefGoogle Scholar
  13. Freed, W.J., Functional brain tissue transplantation: reversal of lesion-induced rotation by intraventricular substantia nigra and adrenal medulla grafts with a note on intro-cranial retinal grafts. Biol. Psychiatry 18: 1205–1267, 1983.PubMedGoogle Scholar
  14. Joyce, J.N., Marshall, J.F., Bankiewicz, et al., Hemiparkinsonism in a monkey after unilateral internal carotid artery infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is associated with regional ipsilat-eral changes in striatal dopamine D2 receptor density. Brain Res. 382:360–364, 1985.CrossRefGoogle Scholar
  15. Langston, J. W., Ballard, P., Tetrud, JW., et al., Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980, 1983.PubMedCrossRefGoogle Scholar
  16. Madrazo, I., Drucker-Colin, R., Diaz, V., et al., Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N. Engl. J. Med. 316:831–834,1987a.PubMedCrossRefGoogle Scholar
  17. Madrazo, I., Drucker-Colin, R., Leon V., et al., Adrenal medullar transplanted to caudate nucleus of treatment of Parkinson’s disease: report of 10 cases, Surg. Forum, 38:510–511, 1987b.Google Scholar
  18. Madrazo, I., Leon, V., Torres, C., et al., Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease, N. Eng. J. Med., 318:51, 1988.Google Scholar
  19. Markey, S.P., Castignoli, N., Jr., Trevor, A. J., Kopin, I.J., (Eds.) MPTP: A Neurotoxin Producing a Parkinsonian Syndrome, Academic Press, Orlando, Florida, 1986.Google Scholar
  20. Perlow, M.J., Freed, W.J., Hoffer, B.J. et al., Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine systems. Science 204:643–647, 1979.PubMedCrossRefGoogle Scholar
  21. Poirier, L.J., The development of animal models for studies in Parkinson’s disease, in Recent Advances in Parkinson’s Disease, McDowell, F.H., and Markham, D.H. (Eds.), F.A. Davis Company, Philadelphia, Pennsylvania, 1971, pp 83–117.Google Scholar
  22. Porrino, L.J., Burns, R.S., Crane, et al., Local cerebral metabolic effects of Ldopa therapy in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys. Proc. Natl. Acad. Sci. 84:595–5999, 1987.CrossRefGoogle Scholar
  23. Sokoloff, L., Reivich, M., Kennedy, C. et al., The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem, 28:897–916, 1977.PubMedCrossRefGoogle Scholar
  24. Stromberg, I., Bygdeman, M., Goldstein, M., et al., Human fetal substantia nigra grafted to the dopamine-de-nervated striatum of immunosuppressed rats: evidence for functional reinnervation, Neurosc. Lett. 71:271–276, 1986.CrossRefGoogle Scholar
  25. Ungerstedt, U., 6-Hydroxydopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 5:107–110, 1968.PubMedCrossRefGoogle Scholar
  26. Ungerstedt, U. Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol. Scand. 367:69–93, 1971.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • I. J. Kopin
    • 1
  • K. S. Bankiewicz
    • 1
  • R. J. Plunkett
    • 1
  • L. Porrino
    • 1
  • D. M. Jacobowitz
    • 2
  • W. T. London
    • 1
  • E. H. Oldfield
    • 1
  1. 1.National Institutes of HealthNational Institute of Neurological and Communicative Disorders and StrokeUSA
  2. 2.National Institute of Mental Health BethesdaUSA

Personalised recommendations