Advertisement

Mechanisms of Action of Substantia Nigra and Adrenal Medulla Grafts

  • William J. Freed
  • Jill B. Becker
Chapter
  • 91 Downloads

Abstract

Loss of the dopaminergic neurons of the substantia nigra (SN) and concomitant degeneration of the nigrostriatal dopamine system has been linked to the clinical syndrome of Parkinson’s disease (Bernheimer et al., 1973). Although brain tissue transplantation techniques have now been applied to several experimental models, it is the nigrostriatal system that has been the most extensively studied. Two brain grafting techniques have been found to produce a long-term alleviation of consequences of SN lesions in experimental models of Parkinson’s disease: intracerebral adrenal medulla grafts, and embryonic SN grafts. The two techniques appear to operate through different mechanisms. SN grafts produce dopamine-containing neurites which reinnervate the striatum. Adrenal medulla grafts, on the other hand, do not significantly reinnervate the striatum.

Keywords

Substantia Nigra Chromaffin Cell Adrenal Medulla Cortical Lesion Corpus Striatum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backlund, E.O., Granberg, P.O., Hamberger, B., Knutsson, E., Martensson, A., Sedvall, G., Seiger, A. and Olson, L.: Transplantation of adrenal medullary tissue to striatum in parkinsonism. J. Neurosurg. 62: 169–173, 1985.PubMedCrossRefGoogle Scholar
  2. de Beaurepaire, R. and Freed, W.J.: Embryonic substantia nigra grafts innervate embryonic striatal co-grafts in preference to mature host striatum. Exp. Neurol. 95: 448–454, 1987.PubMedCrossRefGoogle Scholar
  3. Becker, J.B. and Freed, W.J.: Neurochemical correlates of behavioral changes following intraventricular adrenal medulla grafts: Intraventricular microdialysis in freely moving rats. Prog. Brain Res. (in press).Google Scholar
  4. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., and Seitelberger, K.: Brain dopamine and the syndrome of Parkinson and Huntington. Clinical, morphological, and neurochemical correlations. J. Neurol. Sci. 20: 415–455, 1973.PubMedCrossRefGoogle Scholar
  5. Bjorklund, A., Dunnett, S.B., Stenevi, U., Lewis, M.E. and Iversen, S.D.: Reinnervation of the denervated striatum by substantia nigra transplants: Functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res. 199: 307–333, 1980.PubMedCrossRefGoogle Scholar
  6. Bohn, M.D., Marciano, F., Cupit, L. and Gash, D.M.: Adrenal medulla grafts enhance recovery of striatal dopaminergic fibers. Science 237: 913–916, 1987.PubMedCrossRefGoogle Scholar
  7. Carmichael, S.W.: The Adrenal Medulla, Volume 4. Cambridge University Press, Cambridge, 1986.Google Scholar
  8. Denis-Donini, S., Glowinski, J. and Prochiantz, A.: Specific influences of striatal target neurons on the in vitro outgrowth of mesencephalic dopaminergic neurites: A morphological quantitative study. J. Neurosci. 3:2292–2299,1983.PubMedGoogle Scholar
  9. Dunnett, S.B., Bjorklund, A., Schmidt, R.H., Stenevi, U. and Iversen, S.D.: Intracerebral grafting of neuronal cell suspensions. IV. Behavioral recovery in rats with unilateral 6-OHDA lesions following implantation of nigral cell suspensions in different forebrain sites. Acta Physiol. Scand. Suppl. 522: 29–37, 1983a.Google Scholar
  10. Dunnett, S.B., Bjorklund, A. and Stenevi, U.: Dopamine-rich transplants in experimental parkinsonism. Trends Neurosci. 6: 266–270, 1983b.CrossRefGoogle Scholar
  11. Freed, W.J., Perlow, M.J., Karoum, F., Seiger, A., Olson, L., Hoffer, B.J. and Wyatt, R.J.: Restoration of dopaminergic function by grafting of fetal rat substantia nigra to the caudate nucleus: Long-term behavioral, biochemical, and histochemical studies. Ann. Neurol. 8: 510–519, 1980.PubMedCrossRefGoogle Scholar
  12. Freed, W.J., Morihisa, J.M., Spoor, E., Hoffer, B.J., Olson, L., Seiger, R. and Wyatt, R.J.: Transplanted adrenal chromaffin cells in rat brain reduce lesion-induced rotational behavior. Nature 292: 351–352, 1981.PubMedCrossRefGoogle Scholar
  13. Freed, W.J.: Functional brain tissue transplantation: Reversal of lesion-induced rotation by intraventricular substantia nigra and adrenal medulla grafts, with a note on intracranial retinal grafts. Biol. Psychiatry 18: 1205–1267, 1983.PubMedGoogle Scholar
  14. Freed, W.J., Ko, G.N., Niehoff, D.L., Kuhar, M.J., Hoffer, B.J., Olson, L., Cannon-Spoor, H.E., Morihisa, J. M. and Wyatt, R.J.: Normalization of spiroperidol binding in the denervated rat striatum by homologous grafts of substantia nigra. Science 222: 937–939, 1983a.PubMedCrossRefGoogle Scholar
  15. Freed, W.J., Karoum, F., Spoor, H.E., Olson, L., Morihisa, J. and Wyatt, R.J.: Catecholamine content of intracerebral adrenal medulla grafts. Brain Res. 269: 184–189, 1983b.PubMedCrossRefGoogle Scholar
  16. Freed, W.J., Cannon-Spoor, H.E. and Krauthamer, E.: Intrastriatal adrenal medulla grafts in rats: Long-term survival and behavioral effects. J. Neurosurg. 65: 664–670, 1986.PubMedCrossRefGoogle Scholar
  17. Freed, W.J. and Cannon-Spoor, H.E.: Cortical lesions increase reinnervation of the dorsal striatum by substantia nigra grafts. Brain Res. (in press).Google Scholar
  18. Freund, T.F., Bolan, J.P., Bjorklund, A., Stenevi, U., Dunnett, S.B., Powell, J.F. and Smith, A.D.: Efferent synaptic connections of grafted dopaminergic neurons reinnervating the host neostriatum: A tyrosine hydroxylase immunocytochemical study. J. Neurosci. 5: 603–616, 1985.PubMedGoogle Scholar
  19. Hargraves, R. and Freed, W.J.: Chronic intrastriatal dopamine infusions in rats with unilateral lesions of the substantia nigra. Life Sci. 40: 959–966, 1987.PubMedCrossRefGoogle Scholar
  20. Hemmendinger, L.M., Garber, B.B., Hoffman, PC. and Heller, A.: Target neuron-specific process formation by embryonic mesencephalic dopamine neurons in vitro. Proc. Natl. Acad. Sci. (USA) 78: 1264–1268, 1981.CrossRefGoogle Scholar
  21. Korsching, S., Auburger, G., Heumann, R., Scott, J. and Thoenen, H.: Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinetgic innervation. EMBO Journal 4:1389–1393, 1985.PubMedGoogle Scholar
  22. Leong, S.K. and Lund, R.D.: Anomalous bilateral cortiofugal pathways in albino rats after neonatal lesions. Brain Res. 62: 218–221, 1973.PubMedCrossRefGoogle Scholar
  23. Lindvall, O., Backlund, E.O., Farde, L., Sedvall, G., Freedman, R., Hoffer, B., Nobin, A., Seiger, A. and Olson, L.: Transplantation in Parkinson’s disease: Two cases of adrenal medullary grafts to putamen. Ann. Neurol. 22: 457–468, 1987.PubMedCrossRefGoogle Scholar
  24. Lishajko, F.: Dopamine secretion from the isolated perfused sheep adrenal. Acta Physiologica Scand. 79: 405–410, 1970.CrossRefGoogle Scholar
  25. Madrazo, I., Drucker-Colin, R., Diaz, V., Martinez-Mata, J., Torres, C. and Becerril, J.J.: Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N. Engl. J. Med. 316: 831–834, 1987.PubMedCrossRefGoogle Scholar
  26. Mahalik, T. J., Finger, T.E., Stromberg, I. and Olson, L.: Substantia nigra transplants into denervated striatum of the rat: Ultrastructure of graft and host connections. J. Comp. Neurol. 240: 60–70, 1985.PubMedCrossRefGoogle Scholar
  27. McGeer, P.L., McGeer, E.G., Scherer, U. and Singh, K.: A glutamatergic coricostriatal path? Brain Res. 128: 369–373, 1977.PubMedCrossRefGoogle Scholar
  28. Morihisa, J.M., Nakamura, R.K., Freed, W.J., Mishkin, M. and Wyatt, R.J.: Adrenal medulla grafts survive and exhibit catecholaminespecific fluorescence in the primate brain. Exp. Neurol. 84: 643–653, 1984.PubMedCrossRefGoogle Scholar
  29. Nieto-Sampedro, M., Lewis, E., Cotman, C., Manthorpe, M., Skaper, S., Barbin, G., Longo, F. and Varon. S.: Brain injury causes time-dependent increase in neuronotrophic activity at the lesion site. Science 217: 860–861, 1982.PubMedCrossRefGoogle Scholar
  30. Nieto-Sampedro, M., Manthrope, M., Barbin, G., Varon, S. and Cotman, C.W.: Injury-induced neuronotrophic activity in adult rat brain: Correlation with survival of delayed implants in the wound cavity. J. Neurosci. 3: 2219–2229, 1983.PubMedGoogle Scholar
  31. Olson, L., Seiger, A. and Alund, M.: Locus coeruleus fiber growth in oculo induced by trigeminotomy. Med. Biol. 56: 23 27, 1978.PubMedGoogle Scholar
  32. Olson, L., Seiger, A., Freedman, R. and Hoffer, B. J.: Chromaffin cells can innervate brain tissue: Evidence from intraocular double grafts. Exp. Neurol. 70: 414–426, 1980.PubMedCrossRefGoogle Scholar
  33. Perlow, M.J., Freed, W.J., Hoffer, B.J., Seiger, A., Olson, L. and Wyatt, R.J.: Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204: 643–647, 1979.PubMedCrossRefGoogle Scholar
  34. Rosenstein, J.M.: Adrenal medulla grafts produce blood-brain barrier dysfunction. Brain Res. 414:192–196,1987.PubMedCrossRefGoogle Scholar
  35. Rosenstein, J.M. and Brightman, M. W.: Alterations of the blood-brain barrier after transplantation of autonomic ganglia into the mammalian central nervous system. J. Comp. Neurol. 250: 339–351, 1986.PubMedCrossRefGoogle Scholar
  36. Schwarz, S.S. and Freed, W.J.: Brain tissue transplantation in neonatal rats prevents a lesion-induced syndrome of adipsia, aphagia, and akinesia. Exp. Brain Res. 65: 449–454, 1987.PubMedCrossRefGoogle Scholar
  37. Schneider, G.E.: Early lesions of superior colliculus: Factors affecting the formation of abnormal retinal projections. Brain Behav. Evol. 8: 73–109, 1973.PubMedCrossRefGoogle Scholar
  38. Sendelbeck, S.L. and Urquhart, J.: Spatial distribution of dopamine, methotrexate, and antipyrine during continuous intracerebral microperfusion. Brain Res. 328: 251–258, 1985.PubMedCrossRefGoogle Scholar
  39. Snyder, S.R., Sahar, D., Prasad, A.L.N, and Fahn, S.: Changes in adrenal dopamine concentration after metyrapone or ACTH administration: Implications for the in vivo regulation of dopamine beta-hydroxylase by glucocorticoids. Life Sci. 20: 1077–1086, 1977.CrossRefGoogle Scholar
  40. Stromberg, I., Herrera-Marschitz, M., Hultgren, L., Ungerstedt, U. and Olson, L.: Adrenal medullary implants in the dopamine-denervated rat striatum. I. Acute catecholamine levels in grafts and host caudate as determined by HPLC-electrochemistry and fluorescence histochemical image analysis. Brain Res. 297: 41–51, 1984.PubMedCrossRefGoogle Scholar
  41. Stromberg, I., Herrera-Marschitz, M., Ungerstedt, U., Ebendal, T. and Olson, L.: Chronic implants of chromaffin tissue into the dopamine-denervated striatum. Effects of NGF on graft survival, fiber growth, and rotational behavior. Exp. Brain Res. 60: 335–349, 1985.PubMedCrossRefGoogle Scholar
  42. Ungerstedt, U.: Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system. Acta Physiol. Scand. Suppl. 367: 69–93, 1971.Google Scholar
  43. Unsicker, K., Krisch, B., Otten, U. and Thoenen, H.: Nerve growth factor-induced fiber outgrowth from isolated rat adrenal chromaffin cells: Impairment by glucocorticoids. Proc. Natl. Acad. Sci. (USA) 75: 3498–3502, 1978.CrossRefGoogle Scholar
  44. Webster, K.E.: Cortico-striatal interrelations in the albino rat. J. Anatomy (Lond.) 95: 532–545, 1961.Google Scholar
  45. Wurtman, R.J., Pohorecky, L.A. andBaliga, B.S.: Adrenocortical control of the biosynthesis of epinephrine and proteins in the adrenal medulla. Pharmacol. Rev. 24: 411–426, 1972.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • William J. Freed
    • 1
  • Jill B. Becker
    • 2
  1. 1.Saint Elizabeths HospitalNational Institute of Mental HealthWashington, D.CUSA
  2. 2.Department of Psychology and Neuroscience Program Ann ArborThe University of MichiganUSA

Personalised recommendations