Trophic Effects of Striatal Proteins on Central Dopaminergic Neurons in Culture

  • Humberto B. Valdes
  • Doris Nonner
  • Dino Rulli
  • Leonard Gralnik
  • John Barrett


The dopaminergic neurons of the substantia nigra (mesencephalic region A9) appear to be influenced by trophic interactions with the tissue they innervate, the striatum. Large lesions in the striatum or the nigrostriatal tract lead to a decrease in tyrosine hydroxylase activity in the substantia nigra, mesencephalic region A9 (Reis et al. 1978). Large lesions in the striatum of newborn rats result in a substantial reduction in the number of dopaminergic neurons in the A9 region (Jaeger et al. 1983). In fact the only A9 dopaminergic neurons surviving after removal of the striatum on one side of the brain may be those which project to contralateral striatum. Jeager et al., point out that the loss of dopaminergic neurons is most likely due to loss of a trophic influence from the striatum rather than a consequence of damage to the dopaminergic axons, since transplanted dopaminergic neurons can survive despite even more extensive damage to their processes. Consistent with this trophic interaction hypothesis, co-culture of the mesencephalic dopaminergic neurons with cells from the striatum enhances both dopamine uptake and the number of neurons with detectable dopamine levels (Prochiantz et al. 1979, Hoffman et al. 1983) and the axonal plexus characteristic of the terminal region in the striatum (Hemmendinger et. al. 1981).


Dopaminergic Neuron Glyoxylic Acid Dopamine Synthesis Dopamine Uptake Ventral Mesencephalon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahnert-Hilger, Engele, Reisert, I., and Pilgrim, C., (1986) Different developmental schedules for dopaminergic and noradrenergic neurons in dissociation culture of fetal rat midbrain and hindbrain. Neuioscience 17: 157–165CrossRefGoogle Scholar
  2. Daguet, M.C., DiPorizo, Prochiantz, A., Kato, A., and J., Glowinski, (1980) Release of dopamine from dissociated mesencephalic dopaminergic neurons in primary cultures in absence or presence of striatal target cells. Brain Res. 191: 564–568PubMedCrossRefGoogle Scholar
  3. Dal Toso, R., Giorgi, O., Presti, D., Favaron, M., Leon, A., and G. Toffano (1985) Purification and characterization of neuronotrophic activity from bovine caudate nuclei: possible modulation by GM1 ganglioside. Neurosci. Abst. 11: 949Google Scholar
  4. Dal Toso, Benvegnu, D., Ferrari, G., Soranzo, C., Doherty, P., Walsh, F.S., Toffano, A., and A. Leon (1986) Striatal derived neuronotrophic factor: biological characterization and production of monoclonal antibodies. Neurosci. Abs. 12: 1100Google Scholar
  5. Dal Toso, Giorgi, Soranzo, C., Kirschner, G., Ferrari, G., Favaron, Benvegnu, D., Presti, D., Vicini, S., Toffano, G., Assone, and A. Leon (1988) Development and survival of neurons in dissociated fetal mesencephalic serum-free culture: I. Effects of cell density and of an adult mammalian striatal derived neuronotrophic factor (SDNF). J. Neurosci. 8: 733–745Google Scholar
  6. De la Torre, J.C. and Surgeon, J.W. (1976) A methodological approach to rapid and sensitive monoamine histof-luorescence using a modified glyoxylic acid technique: the SPG method. Histochem. 49: 81–93CrossRefGoogle Scholar
  7. Denis-Donini, S., Glowinski, J., and A. Prochiantz (1984) Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurons. Nature 307: 641–643PubMedCrossRefGoogle Scholar
  8. Fellows, Al-Hader, and R. Kadle (1987) IGF-I supports survival and differentiation of fetal rat brain neurons in serum-free defined medium. Neurosci. Abs. 13: 1615Google Scholar
  9. Friedman, W.J., Dreyfus, C.F., McEwen, B.S., andl.B. Black (1985) Depolarizing signals increase tyrosine hydroxylase development in cultured mouse substantia nigra. Neurosci. Abs. 11: 1142Google Scholar
  10. Friedman, W.F., Dreyfus, C.F., McEwen, B.S., and I.B. Black. (1986) Substance K regulates tyrosine hydroxylase in cultured embryonic mouse substantia nigra. Neurosci. Abs. 12: 378Google Scholar
  11. Fonnum, F. (1975) A rapid radiochemical method for the determination of cholineacetyltransferase, J. Neurochem. 24: 407409PubMedCrossRefGoogle Scholar
  12. Gammeltoft, S., Haselbacher, G., Humbel, R., Fehlmann, M., and E. Van Obberghen (1986) Two types of receptor for insulin-like growth factors in mammalian brain. EMBO J. 3407–3412Google Scholar
  13. Haselbacher, G., Schwab, M., Pasi, A., and Humbel, R., (1985) Insulin-like growth factor II (IGF II) in human brain: Regional distribution of IGF II and of higher molecular mass forms. Proc. Natl. Acad. Sci. USA 82: 2153–2157PubMedCrossRefGoogle Scholar
  14. Hemmendinger, L.M., Barber, B.B., Hoffmann, PC. and A. Heller (1981) Target neuron-specific process formation by embryonic mesencephalic dopamine neurons in vitro. Proc. Natl. Acad. Sci. USA 78: 1264–1268PubMedCrossRefGoogle Scholar
  15. Horowitz, P.M. (1985) Rapid fluorescamine based protein assay usable in the presence of interfering substances. J. Chromatogr. 319: 446–449PubMedCrossRefGoogle Scholar
  16. Hoffman, PC., Hemmendinger, LM., Kotake C., and Heller, A.,(1983) Enhanced dopamine cell survival in reaggregates containing telencephalic target cells., Brain Res 274: 275–281CrossRefGoogle Scholar
  17. Jaeger, C.B., Joh, T.H., and D.J. Reis (1983) The effect of forebrain lesions in the neonatal rat: survival of midbrain dopaminergic neurons and the crossed nigrostriatal projection. J. Comp. Neurology 218: 74–90CrossRefGoogle Scholar
  18. Kaufman, L.M. and Barrett, J.N. (1983) Serum factor supporting long-term survival of rat central neurons in culture. Science 220: 1394–1396PubMedCrossRefGoogle Scholar
  19. Kawamoto, J.C. and J.N. Barrett (1986) Cryopreservation of primary neurons for tissue culture. Brain Res. 384:84–93PubMedCrossRefGoogle Scholar
  20. Lenoir, D., and Honegger, P., (1983) Insulin-like growth factor I (IGF-I) stimulates DNA synthesis in fetal rat brain cell cultures. Dev. Brain Res. 7: 205–213CrossRefGoogle Scholar
  21. Murphy, L. J., Bell, G.I. and H.G. Friesen (1987) Tissue distribution of insulin-like growth factors I and II messenger ribonucleic acid in the adult rat. Endocrinology 120: 1279–1282PubMedCrossRefGoogle Scholar
  22. Prochiantz, A., Di Porzio, Kato, A., Berger, B. and J. Glowinski (1979) In vitro maturation of mesencephalic dopaminergic neurons from mouse embryos is enhanced in the presence of their striatal target cells. Proc. Natl. Acad. Sci. 76: 5387–5391PubMedCrossRefGoogle Scholar
  23. Prochiantz, A., Daguet, M.C., Herbert, A., and Glowinski, J. (1981) Specific stimulation of in vitro maturation of mesencephalic dopaminergic neurons by striatal membranes. Nature 293: 570–572PubMedCrossRefGoogle Scholar
  24. Puymirat, J., Faivre-Bauman, A., Barret, A., Loudes, C., and Tixier-Vidal, A., (1985) Does triiodothyronine influence the morphogenesis of fetal mouse mesencephalic dopaminergic neruons cultured in chemically defined medium? Brain Res 355: 315–317PubMedGoogle Scholar
  25. Recio-Pinto, E., and Ishii, D., (1984) Effects of insulin, insulin-like growth factor-II and Nerve Growth Factor on neurite outgrowth in cultured human neuroblastoma cells. Brain Res. 302: 323–334PubMedCrossRefGoogle Scholar
  26. Reis, D.J., Gilad, G., Pickel, V.M., and T.H. Joh (1978) Reversible changes in the activities and amounts of tyrosine hydroxylase in dopamine neurons of the substantia nigra in response to axonal injury as studied by immunochemical and immunocytochemical methods. Brain Res. 144: 325–342PubMedCrossRefGoogle Scholar
  27. Rotwein, P., Burgess, S.K., Milbrandt, J.D., and J.E. Krause (1988) Differential experession of insulin-like growth factor genes in rat central nervous system. Proc. Natl. Acad. Sci. USA 85: 265–269PubMedCrossRefGoogle Scholar
  28. Shalaby, I., Kotake, C., Hoffman, P., and Heller, A., (1983) Release of dopamine from coaggregate cultures of mesencephalic tegmentum and corpus striatum. J. Neurosci. 3; 1565–1571PubMedGoogle Scholar
  29. Shalaby, I., Hoffman, P., and Heller, A. (1984) Release of dopamine from mesencephalic neurons in aggregate cultures: influence of target and non-target cells. Brain Res. 307: 347–350PubMedCrossRefGoogle Scholar
  30. Tomozawa, Y. and Appel, S.H. (1986) Soluble stiatal extracts enhance development of mesencephalic dopaminergic neurons in vitro. Brain Res. 399: 111–124PubMedCrossRefGoogle Scholar
  31. Valdes, H.B., Nonner, D., Rulli, D., Barrett, E., and J. Barrett. Effects of striatal extracts and the insulin-like growth factors on rat dopaminergic central neurons in culture (in preparation)Google Scholar
  32. Woodward, W.R., Seil, F.J., and J.P. Hammerstad (1987) Cerebellum plus locus coeruleus in tissue culture. II: Development and metabolism of catecholamines. J. Neurosci. Res. 17: 184–188PubMedCrossRefGoogle Scholar
  33. Zamir, N., Palkovits, M., Weber, E., Mezey, E., and M. Brownstein (1984) A dynorphinergic pathway of leu-enkephalin production in rat substantia nigra. Nature 307: 643–645PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Humberto B. Valdes
    • 1
  • Doris Nonner
    • 1
  • Dino Rulli
    • 1
  • Leonard Gralnik
    • 1
  • John Barrett
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of MiamiMiamiUSA

Personalised recommendations