Invivo Corrosion of a Cobalt-Base Alloy and Its Biological Consequences

  • Jonathan Black
Part of the NATO ASI Series book series (NSSA, volume 171)

Abstract

Implants used in modem orthopaedic surgery are fabricated from three alloy systems with different majority or base components. These alloy systems are iron based high chromium alloys, collectively termed stainless steels, cobalt based alloys and titanium based alloys. Stainless steels and titanium alloys are used for fabrication of internal fixation devices. Cobalt based alloys are not widely used in this application due to their high material and fabrication costs and their relative lack of ductility. Such devices are considered to be temporary implants; long term biological effects should not be a factor in their routine use.

Keywords

Fatigue Titanium Nickel Chromium Lymphoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Charnley, J.: Low Friction Arthroplasty of the Hip, (Springer-Verlag, Berlin, 1979).CrossRefGoogle Scholar
  2. 2.
    McKee, G.K.: Total hip replacement — Past, present and future. Biomaterials 3: 130, 1982.CrossRefGoogle Scholar
  3. 3.
    Venable, C.S. ans Stuck, W.G.: Electrolysis controlling factor in the use of metals in treating fractures. J. Am. Med. Assoc. 111: 1349, 1938.CrossRefGoogle Scholar
  4. 4.
    Smith-Petersen, M.N.: Evolution of mould arthroplasty of the hip joint. Clin. Orthop. 134: 5, 1978.Google Scholar
  5. 5.
    (Smith-Petersen, M.N.): Standard specification for cast cobalt-chromium-molybdenum alloy for surgical implant applications. Designation: F 75–82. 1984 Annual Book of ASTM Standards, Vol. 13.01: Medical Devices, (American Society for Testing and Materials, Philadelphia, 1984), p. 13.Google Scholar
  6. 6.
    (Smith-Petersen, M.N.): Standard specification for wrought cobalt-chromium-tungsten-nickel alloy for surgical implant applications. Designation: F 90–82. 1984 Annual Book of ASTM Standards, Vol. 13.01: Medical Devices, (American Society for Testing and Materials, Philadelphia, 1984), p. 17.Google Scholar
  7. 7.
    (Smith-Petersen, M.N.): Standard specification for thermomechanically processed cobalt-chromium-molybdenum alloy for surgical implant applications. Designation: F 799–82. 1984 Annual Book of ASTM Standards, Vol. 13.01: Medical Devices, (American Society for Testing and Materials, Philadelphia, 1984), p. 325.Google Scholar
  8. 8.
    Charnley, J. and Cupic, A.: Results of low friction arthroplasty of the hip. Nine and ten year followup. Clin. Orthop. 95: 9, 1978.Google Scholar
  9. 9.
    Dorr, L.D., Takei, G.K. and Conaty, J.P.: Total hip arthroplasties in patients less than forty-five years old. J. Bone Joint Surg. 65A: 474, 1983.Google Scholar
  10. 10.
    Collis, D.K.: Cemented total hip replacement in patients who are less than fifty years old. J. Bone Joint Surg. 66A: 353, 1984.Google Scholar
  11. 11.
    Ranawat, C.S., Atkinson, R.E., Salvati, E., and Wilson, P.D. Jr.: Conventional total hip arthroplasty for degenerative joint disease in patients between the ages of forty and sixty years. J. Bone Joint Surg. 66A: 745, 1984.Google Scholar
  12. 12.
    (Ranawat, C.S., Atkinson, R.E., Salvati, E., and Wilson, P.D. Jr.): Vital Statistics of the United States — 1980, Life Tables, Vol. II, Sec. 6, DHHS(PHS)84-1104 (U.S. Government Printing Office, Washington, 1984), p. 13.Google Scholar
  13. 13.
    Galante, J.O.: Overview of current attempts to eliminate methyl-methacrylate. The Hip — 1983 Proceedings of the 1983 Open Meeting of the Hip Society C.V. Mosby, St. Louis 1984, p. 181.Google Scholar
  14. 14.
    Judet, R., Siguier, M. and Brumpt, B.: A noncemented total hip prosthesis. Clin. Orthop. 137: 76, 1978.Google Scholar
  15. 15.
    Lord, G., and Bancel, P.: The madreporique cementless total hip arthroplasty. New experimental data and a seven-year clinical follow-up study. Clin. Orthop. 176: 67, 1983.Google Scholar
  16. 16.
    Black, J.: Systemic effects of biomaterials. Biomaterials 5: 11, 1984.CrossRefGoogle Scholar
  17. 17.
    Steinemann, S.G.: Corrosion of surgical implants — in vivo and in vitro test. Evaluation of Biomaterials, ed. by G.D. Winter, J.L. Leray, K. de Groot, (John Wiley & Sons Ltd, Chichester, 1980), p. 1.Google Scholar
  18. 18.
    Taylor, D.M.: Trace metal patterns and disease. J. Bone Joint Surg. 55B: 422, 1973.Google Scholar
  19. 19.
    Versieck, J. and Cornelis, R.: Normal levels of trace elements in human blood plasma or serum. Anal. Chim. Acta 116: 217, 1980.CrossRefGoogle Scholar
  20. 20.
    Cornelis, R.: Chromium revisited, in: Proceedings: 3rd. International Workshop: Trace Element Analytical Chemistry in Medicine and Biology, ed. by P. Bratten and P. Schramel, (DeGruyter, Berlin, in press, 1986).Google Scholar
  21. 21.
    Luckey, T.D. and Venugopal, B.: Metal Toxicity in Mammals, Vol. 1: Physiological and Chemical Basis for Metal Toxicity, Vol. 1, (Plenum Press, New York, 1977).CrossRefGoogle Scholar
  22. 22.
    Ferguson, A.B., Akahoshi, Y., Laing, P.G. and Hodge, E.S.: Characteristics of trace ions released from embedded metal implants in the rabit. J. Bone Joint Surg. 44A: 323, 1962.Google Scholar
  23. 23.
    Woodman, J.L.: Organometallic Corrosion Products: An In Vivo and In Vitro Comparison, Ph.D. Dissertation, University of Pennsylvania, Philadelphia, 1980.Google Scholar
  24. 24.
    Woodman, J.L., Black, J. and Jiminez, S.A.: Isolation of serum protein organometallic corrosion products from 316LSS and HS-21 in vitro and in vivo. J. Biomed. Mater. Res., 18: 99, 1983.CrossRefGoogle Scholar
  25. 25.
    Smith, G.K.: Systemic Transport and Distribution of Iron and Chromium from 316L Stainless Steel Implants, Ph.D. Dissertation, University of Pennsylvania, Philadelphia, 1982.Google Scholar
  26. 26.
    Smith, G.K., Black, J.: Estimation of in vivo 316L Stainless steel corrosion rate from blood transport and accumulation data, ASTM STP 859: Corrosion and Degradation of Implant Materials, ed. by A.K. Fraker and C.D. Griffin, (American Society in Testing and Materials, Philadelphia, 1985), p.223.CrossRefGoogle Scholar
  27. 27.
    Black, J., Maitin, E.C., Gelman, H. and Morris, D.: Serum concentrations of chromium, cobalt and nickel after total hip replacement: A six month study. Biomaterials 4: 160, 1983.CrossRefGoogle Scholar
  28. 28.
    Keogel, A. and Black, J.: Release of corrosion products by F 75 cobalt base alloy in the rat. I: Acute serum elevations. J. Biomed. Mater. Res. 18: 513, 1984.CrossRefGoogle Scholar
  29. 29.
    Pazzaglia, U.E., Minoia, C., Ceciliani, L. and Riccardi, C.: Metal determination in organic fluids of patients with stainless steel arthroplasty. Acta Orthop. Scand. 54: 574, 1983.CrossRefGoogle Scholar
  30. 30.
    Wapner, K.L., Black, J., Morris, D.: Release of corrosion products by F 75 cobalt base alloy in the rat. II: Morbidity apparently related to chromium release in vivo. J. Biomed. Mater. Res. (in press, 1986).Google Scholar
  31. 31.
    Oppenheimer, P.H., Morris, D.M., Konowal, A.K., Clark, C.C., and Black, J.: Effect of carbon coatings on in vivo release of Cr, Co & Ni from F 75 alloy. Trans. Soc. Biomater. 7: 130, 1984.Google Scholar
  32. 32.
    Woodman, J.L., Black, J. and Nunamaker, D.N.: Release of cobalt and nickel from a new total finger joint prosthesis made of vitallium. J. Biomed. Mater. Res. 17: 655, 1983.CrossRefGoogle Scholar
  33. 33.
    Black, J.: Metallic ion release and its relationship to oncogenesis. The Hip — 1985 (Proceedings of the 1985 Open meeting of the Hip Society) (C.V.Mosby Co., St. Louis, in press, 1986).Google Scholar
  34. 34.
    Sugarman, B. and Young, E.J. eds.: Infections Associated with Prosthetic Devices (CRC Press, Boca Raton, 1984).Google Scholar
  35. 35.
    Carlsson, A.S., Josefsson, G. and Lindberg, L.: Function of fifty-seven septic, revised and healed total hip arthroplasties. Acta Orthop. Scand. 51: 937, 1980.CrossRefGoogle Scholar
  36. 36.
    Merritt, K., Shafer, J.W. and Brown, S.A.: Implant site infection with porous and dense materials. J. Biomed. Mater. Res. 13: 101, 1979.CrossRefGoogle Scholar
  37. 37.
    Blomgren, G.: Hematogenous infection of total joint replacement. An experimental study in the rabbit. Acta Orthop. Scand. (Suppl.) 187: 1, 1981.Google Scholar
  38. 38.
    Black, J.: Biological Performance of Materials: Fundamentals of Biocompatibility. (Marcel Dekker, New York, 1981), p. 96.Google Scholar
  39. 39.
    Gristina, A.G. and Costerton, J.W.: Bacterial adherence to bio-materials and tissue. J. Bone Joint Surg. 67A: 264, 1985.Google Scholar
  40. 40.
    Rae, T: A study of the effects of particulate metals of orthopaedic interest on murine macrophages in vitro. J. Bone Joint Surg. 57B: 444, 1975.Google Scholar
  41. 41.
    Rae, T.: The toxicity of metals used in orthopaedics prostheses. J. Bone Joint SUrg. 63B: 435, 1981.Google Scholar
  42. 42.
    Weinberg, E.D.: Iron and susceptibility to infectious disease. Science 184: 952, 1974.CrossRefGoogle Scholar
  43. 43.
    Weinberg, E.D.: Iron and infection. Microbiol. Rev. 42: 45, 1978.Google Scholar
  44. 44.
    Willert, H.G. and Semlitsch, M: Reaction of the articular capsule to wear products of artificial joint prostheses. J. Biomed. Mater. Res. 11: 157, 1977.CrossRefGoogle Scholar
  45. 45.
    Revell, P.A., Freeman, M.A.R. and Weightman, B.W.: The response of articular tissues to polyethylene wear debris from prosthetic joints. Arch. Orthop. Traum. Surg. 91: 167, 1978.CrossRefGoogle Scholar
  46. 46.
    Evans, E.M., Freeman, M.A.R., Miller, A.J. and Vernon-Roberts, B: Metal sensitivity as a cause of bone necrosis and loosening of the prosthesis in total joint replacement. J. Bone Joint Surg. 56B: 626, 1974.Google Scholar
  47. 47.
    Brown, G.C., Lockshin, M.D., Salvati, E.A. and Bullough, P.G.: Sensitivity to metal as a possible cause of sterile loosening after cobalt chromium total hip replacement arthroplasty. J. Bone Joint Surg. 59A: 164, 1977.Google Scholar
  48. 48.
    Lee, A.J.C. and Ling, R.S.M.: Loosening, in: Complications of Total Hip Replacement Surgery, ed. R.S.M. Ling (Churchill-Livingstone, Edinburgh, 1984), p. 110.Google Scholar
  49. 49.
    Merritt, K. and Brown, S.A.: Hypersensitivity to metallic biomaterials. in: Systemic Aspects of Blocompatibility, Vol. II, ed. D.F. Williams (CRC Press, Boca Raton, 1981), p. 33.Google Scholar
  50. 50.
    Merritt, K. and Brown, S.A.: Metal sensitivity reactions to orthopaedic implants. Int. J. Dermatol. 20: 89, 1981.CrossRefGoogle Scholar
  51. 51.
    Fregert, S. and Rorsman, H.: Allergy to chromium, nickel and cobalt. Acta Derm.-Venereol. 46: 144, 1966.Google Scholar
  52. 52.
    Deutman, R., Mulder, T.J., Brian, R. and Kemp, H.B.S.: Incidence of metal sensitivity before and after total hip arthroplasty. J. Bone Joint Surg. 59A: 862, 1977.Google Scholar
  53. 53.
    Carlsson, A.S., Magnusson, B. and Moller, H.: Metal sensitivity in patients with metal-to-plastic total hip arthroplasties. Acta Orthop. Scand. 51: 57, 1980.CrossRefGoogle Scholar
  54. 54.
    Furst, A.: An overview of metal carcinogenesis. Adv. Exp. Med. Biol. 91: 1, 1978.CrossRefGoogle Scholar
  55. 55.
    Léonard, A. and Lauwerys, R.R.: Carcinogenicity and mutagenicity of chromium. Mutat. Res. 76: 227, 1980.CrossRefGoogle Scholar
  56. 56.
    International Agency for Research on Cancer (IARC), Chromium and Chromium Compounds, in: (IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 23, IARC, Switzerland, 1980), p. 205.Google Scholar
  57. 57.
    Léonard, A., Gerber, G.B. and Jaquet, P.: Carcinogenicity, mutagenicity and teratogenicity of nickel. Mutat. Res. 87: 1, 1981.CrossRefGoogle Scholar
  58. 58.
    Heath, J.C., Freeman, M.A.R. and Swanson, S.A.V.: Carcinogenic properties of wear particles from prostheses made in cobalt-chromium alloy. Lancet 1: 564, 1971.CrossRefGoogle Scholar
  59. 59.
    Memoli, V.A., Woodman, J.L., Urban, R.M. and Galante, J.O.: Malignant neoplasms associated with orthopedic implant materials. Trans. Orthop. Res. Soc. 7: 164, 1982.Google Scholar
  60. 60.
    (Memoli, V.A., Woodman, J.L., Urban, R.M. and Galante, J.O.): Third Annual Report on Carcinogenesis, December 1982. U.S. Department of Health and Human Services, Public Health Service. (U.S. Government Printing Office, Washington, 1982).Google Scholar
  61. 61.
    Sax, N.I.: Cancer Causing Chemicals, (Van Nostrand Reinhold, New York, 1981).Google Scholar
  62. 62.
    Bartolozzi, A. and Black, J.: Chromium concentrations in serum, blood clot and urine from patients following total hip arthroplasty. Biomaterials 6: 2, 1985.CrossRefGoogle Scholar
  63. 63.
    Grogan, C.H.: Experimental studies in metal carcinogenesis. VIII. On the etiological factor in Chromate cancer. Cancer 10: 625, 1957.CrossRefGoogle Scholar
  64. 64.
    Mertz, W.: Chromium: An ultra-trace element. Chem. Scripta. 21: 145, 1983.Google Scholar
  65. 65.
    Merritt, K., Wortman, R.S., Millard, M. and Brown, S.A.: XPS analysis of 316 LVM corroded in serum and saline. Biomat., Med. Dev., Art. Org. 11: 115, 1983.Google Scholar
  66. 66.
    Rogers, G.T.: In vivo production of hexavalent chromium. Biomaterials 5: 244, 1984.CrossRefGoogle Scholar
  67. 67.
    Petrilli, F.L. and De Flora, S: Oxidation of inactive trivalent chromium to the mutagenic hexavalent form. Mutat. Res. 58: 167, 1978.CrossRefGoogle Scholar
  68. 68.
    Maltoni, C.: predictive value of carcinogenesis bioassays. Ann. N.Y. Acad. Sci. 271: 431, 1976.CrossRefGoogle Scholar
  69. 69.
    Hildebrand, H.F., Ostapczuk, P., Mercier, J.F., Stoeppler, M., Roumazeille, B. and Decoulx, J.: Orthopaedic implants and corrosion products. Ultrastructural and analytical studies of 65 patients, in: Biocompatibility of Co-Cr-Ni Alloys, eds. H. F. Hildebrand, M. Champy (Plenum, New York, 1986).Google Scholar
  70. 70.
    Gaechter, A., Alroy, J., Andersson, G.B.J., Galante, J., Rostoker, W., and Schajowicz, F.: Metal carcinogenesis. A study of the carcinogenic activity of solid metals alloys in rats. J. Bone Joint Surg. 59A: 622, 1977.Google Scholar
  71. 71.
    Banks, W.E., Morris, E., Herron, M.R. and Green, R.W.: Osteogenic sarcoma associated with internal fracture fixation in two dogs. J. Am. Vet. Med. Assoc. 167: 166, 1975.Google Scholar
  72. 72.
    Harrison, J.W., McLain, D.L., Horn, R.B., Wilson, G.P. III, Chalman, J.A. and McGowan, K.N.: Osteosarcoma associated with metallic implants. Report of two cases in dogs. Clin. Orthop. 116: 253, 1976.Google Scholar
  73. 73.
    Sinibaldi, K., Rosen, H., Liu, Si-K. and DeAngelis, M.: Tumors associated with metallic implants in animals. Clin. Orthop 118: 257, 1976.Google Scholar
  74. 74.
    Herring, M.E., Smith, G.K. and Nunamaker, D.M.: Eight cases of implant-associated osteosarcoma in the canine. J. Am. Vet. Med. Assoc. (In press, 1986).Google Scholar
  75. 75.
    Stevenson, S., Hohn, R.B., Poller, O.E., Fetter, A.W., Olmstead, M.L. and Wind, A.P.: Fracture-associated sarcoma in the dog. J. Am. Vet. Med. Assoc. 180: 1189, 1982.Google Scholar
  76. 76.
    Knecht, C.D. and Priester, W.A.: Osteosarcoma in dogs: A study of previous trauma, fracture and fracture fixations. J. Am. Anim. Hosp. Assoc. 14: 82, 1978.Google Scholar
  77. 77.
    Mcdougall, A.: Malignant tumor at the site of bone plating. J. Bone Joint Surg. 38B: 709, 1956.Google Scholar
  78. 78.
    Delgado, E.R.: Sarcoma following a surgically treated fractured tibia. A case report. Clin. Orthop. 12: 315, 1958.Google Scholar
  79. 79.
    Dube, V.E. and Fisher, D.E.: Hemangioendothelioma of the leg following metallic fixation of the tibia. Cancer 30: 1260, 1972.CrossRefGoogle Scholar
  80. 80.
    Tayton, K.J.J.: Ewing’s sarcoma at the site of a metal plate. Cancer 45: 413, 1980.CrossRefGoogle Scholar
  81. 81.
    McDonald, L: Malignant lymphoma associated with internal fixation of a fractured tibia. Cancer 48: 1009, 1981.CrossRefGoogle Scholar
  82. 82.
    Dodion, P., Putz, P., Amiri-Lamraski, M.H., Efira, A., de Martelære, E. and Heimann, R.: Immunoblastic lymphoma at the site of an infected bone plate. Histopathology 6: 807, 1983.CrossRefGoogle Scholar
  83. 83.
    Bagó-Granell, J., Aguirre-Canyadell, M., Nardi, J. and Tallada, N.: Malignant fibrous histiocytoma of bone at the site of a total hip arthroplasty. A case report. J. Bone Joint Surg. 66B: 38, 1984.Google Scholar
  84. 84.
    Swann, M.: Malignant soft-tissue tumour at the site of a total hip replacement. J. Bone Joint Surg. 66B: 629, 1984.Google Scholar
  85. 85.
    Penaman, H.G. and Ring, P.A.: Osteosarcoma in association with total hip replacement. J. Bone Joint Surg. 66B 632, 1984.Google Scholar
  86. 86.
    R.S.M. Ling: Personal communication, 1984.Google Scholar
  87. 87.
    L. Riley: Orthopaedic Research Seminar, University of Pennsylvania, 1983.Google Scholar
  88. 88.
    Heselson, N.G., Price, S.K., Mills, E.E.D., Conway, S.S.M and Marks, R.K.: Two malignant fibrous histiocytomas in bone infarcts. J. Bone Joint Surg. 65A: 116, 1983.Google Scholar
  89. 89.
    Bogumill, G.P. and Schwamm, H.A.: Orthopaedic Pathology, (W.B. Saunders, Philadelphia, 1984).Google Scholar
  90. 90.
    Capanna, R., Bertoni F., Bacchini, P., Bacci, G., Guera, A and Campanacci, M: Malignant fibrous histiocytoma. Cancer 54: 177, 1984.CrossRefGoogle Scholar
  91. 91.
    Mirra, J.M., Marder, R.A. and Amstutz, H.C.: The pathology of failed total joint arthroplasty. Clin. Orthop. 170: 175, 1982.Google Scholar
  92. 92.
    Vasiliev, J. M. and Moizhess, T.G.: Tumorgenicity of sarcoma cells is enhanced by the local environment of implanted foreign body. Int. J. Cancer. 30: 525, 1982.CrossRefGoogle Scholar
  93. 93.
    (Vasiliev, J. M. and Moizhess, T.G.): Cancer Facts & Figures 1984, (American Cancer Society, New York, 1984).Google Scholar
  94. 94.
    (Vasiliev, J. M. and Moizhess, T.G.): Cancer Statistics — Regular Series, MB 1, No. 12, Office of Population & Census Surveys, (Her Majesty’s Printing Office, London, 1980).Google Scholar
  95. 95.
    (Vasiliev, J. M. and Moizhess, T.G.): Cancer Incidence in Sweden, National Board of Health and Welfare, The Cancer Registry, (Tryckindustri, Solna, 1983).Google Scholar
  96. 96.
    Dobbs, H.S. and Minski, M.J.: Metal ion release after total hip replacement. Biomaterials 1: 193, 1980.CrossRefGoogle Scholar
  97. 97.
    Schottenfeld, D. and Haas, J.F.: Carcinogens in the workplace. CA 29: 144, 1979.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Jonathan Black
    • 1
  1. 1.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations