Biological Monitoring of Exposure to Toxic Trace Elements

  • J. Savory
  • M. R. Wills


The evaluation of trace metal status has usually been accomplished by the analysis of either urine or blood. Serum or plasma are the biological fluids which are most frequently analyzed with the anticipation that the trace metal concentration will reflect tissue levels; the assumption being that an equilibrium exists between the circulation and the tissues. This assumption is not always valid and in many instances either the serum or plasma trace metal concentration is not a good indicator of tissue levels.


Chronic Renal Failure Neutron Activation Analysis Aluminum Concentration Graphite Tube Electrothermal Atomic Absorption Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Betts CT. Aluminium Poisoning. Toledo: Research Publishing, Co, 1526.Google Scholar
  2. 2.
    Campbell IR, Cass JS, Cholak J, Kehoe RA. Aluminum in the environment. AMA Arch Arch Industr Health 1957; 15: 359–448.Google Scholar
  3. 3.
    Sorenson JR, Campbell IR, Tepper LB, Lingg RD. Aluminum in the environment and human health. Environ Health persp 1974; 8: 3–95.CrossRefGoogle Scholar
  4. 4.
    Wills MR, Savory J. Aluminium Poisoning: Dialysis, encephalopathy osteomalacia and anemia. Lancet 1983; 2: 29–33.CrossRefGoogle Scholar
  5. 5.
    Griswold WR, Reznik V, Mendoza SA, Trauner D, Alfrey AC. Accumulation of aluminum in a nondialyzed uremic child receiving aluminum hydroxide. Pediatrics 1983; 71: 56–8.Google Scholar
  6. 6.
    Andreoli SP, Bergstein JM, Sherrard DJ. Aluminum intoxication from aluminum-containing phosphate binders in children with azotemia not undergoing dialysis. New Engl J Med 1984; 310: 1079–84.CrossRefGoogle Scholar
  7. 7.
    Kaye M. Oral aluminum toxicity in a non-dialyzed patient with renal failure. Clin Nephrol 1983; 20: 208–11.Google Scholar
  8. 8.
    Friberg L, Nordberg G.F., Vouk VB, eds. Handbook of the toxicology of metals, 2nd edition. Elsevier/North Holland Biomedical Press, Amsterdam, 1986.Google Scholar
  9. 9.
    Savory J, Berlin A, Courtoux, Yeoman B, Wills MR. Summary report of an international workshop on the role of biological monitoring in the prevention of aluminium toxicity in man: aluminium analysis in biological fluids. Ann Clin Lab Sci 1983; 13: 444–51.Google Scholar
  10. 10.
    Milliner DS, Nebeker HG, Ott SM, et al. Use of the deferoxamine infusion test in the diagnosis of aluminum-related osteodystrophy. Ann Int Med 1984; 101: 775–9.Google Scholar
  11. 11.
    Berland Y, Charhon SA, Olmer M, Meunier PJ. Predictive value of desferrioxamine infusion test for bone aluminium deposits in hemodialyzed patients. Nephron 1985; 40: 433–5.CrossRefGoogle Scholar
  12. 12.
    Hodsman AB, Sherrard DJ, Alfrey AC, et al. Bone aluminum and histomorphometric features of renal osteodystrophy. J Clin Endocrinol Metab 1982; 54: 539–46.CrossRefGoogle Scholar
  13. 13.
    Brown SS, Sundeman FW Jr., eds. Progress in nickel toxicology. Oxford UK: Blackwell Scientific Publications, 1986: 137–140.Google Scholar
  14. 14.
    Alfrey AC, LeGendre CR, Kaehny WD. The dialysis encephalopathy syndrome. Possible aluminum intoxication. New Engl J Med 1976; 294: 1848.CrossRefGoogle Scholar
  15. 15.
    Maloney NA, Ott SM, Alfrey AC, Miller NL, Coburn JW, Sherrard DJ. Histological quantitation of aluminum in iliac bone patients with renal failure. J Lab Clin Med 1982; 99: 206–16.Google Scholar
  16. 16.
    Crapper DR, Krishnan, Quittkat S. Aluminium, neurofibrillary degeneration and Alzheimer’s disease. Brain 1976; 99: 67–80.CrossRefGoogle Scholar
  17. 17.
    Versieck J, Cornelis R. Normal levels of trace elements in human blood plasma or serum. Anal Chim Acta 1980; 116: 217–54.CrossRefGoogle Scholar
  18. 18.
    Gorsky JE, Dietz AA. Determination of aluminum in biological samples by atomic absorption spectrophotometry with a graphite furnace. Clin Chem 1978; 24: 1485–90.Google Scholar
  19. 19.
    Alderman FR, Gitelman HJ. Improved electrothermal determination of aluminum in serum by atomic absorption spectroscopy. Clin Chem 1980; 26: 258–60.Google Scholar
  20. 20.
    Brown S, Bertholf RL, Wills MR, Savory J. Electrothermal atomic absorption spectrometric determination of aluminum in serum with a new technique for protein precipitation. Clin Chem 1984; 30: 1216–8.Google Scholar
  21. 21.
    Sunderman FW Jr, Crisostomo MC, Reid MC, Hopfer SM, Nomoto S. Rapid analysis of nickel in serum and whole blood by electrothermal atomic absorption spectrophotometry. Ann Clin Lab Sci 1984; 14: 232–41.Google Scholar
  22. 22.
    Leung FY, Henderson AR. Improved determination of aluminum in serum and urine with use of a stabilized temperature platform furnace. Clin Chem 1982; 28: 2139–43.Google Scholar
  23. 23.
    Brown S, Mendoza N, Bertholf RL, et al. Absorption of aluminum from aceglutamide aluminum in healthy adult males. Res Comm Chem Path Pharm 1986; 53: 105–16.Google Scholar
  24. 24.
    Sunderman FW Jr, Marzouk A, Crisostomo MC, Weatherby DR. Electrothermal atomic absorption spectrophotometry of nickel in tissue homogenates. Ann Clin Lab Sci 1985; 15: 299–307.Google Scholar
  25. 25.
    Aysola P, Anderson P, Langford CH. Wet ashing in biological samples in a microwave oven under pressure using poly(tetrafluoroethylene) vessels. Anal Chem 1987; 59: 1582–3.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • J. Savory
    • 1
  • M. R. Wills
    • 1
  1. 1.Departments of Pathology and BiochemistryUniversity of Virginia Medical CenterCharlottesvilleUSA

Personalised recommendations