New Biochemical Parameters in the Diagnosis of Joint Diseases

  • K. Kleesiek
  • R. Reinards
  • H. Greiling

Abstract

An important aim in the diagnostic strategy of rheumatic diseases is the differentiation between chronic inflammatory and degenerative joint diseases. In the early phase of chronic joint diseases the separation between rheumatoid arthritis and osteoarthrosis, especially polyarticular osteoarthrosis, might be difficult. In principle osteoarthrosis is characterized by an isolated defect of the cartilage metabolism. Therefore biochemical and immunochemical methods which allow the recognition of pathobiochemical alterations of the osteoarthrotic metabolism in blood are lacking. Also during acute inflammatory phases of osteoarthrosis, no changes of biochemical blood parameters are observed.

Keywords

Arthritis Superoxide Polysaccharide Pyridine Half Life 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kleesiek K, Michels P, Greiling H. Clinical chemical synovial fluid analysis: a comparative study of the discriminative value of 20 parameters. J Clin Chem Clin Biochem 1982; 20: 688–689.Google Scholar
  2. 2.
    Brown D. ed. Biomedical computer program BMDP-79. University California Press, Berkely, 1979.Google Scholar
  3. 3.
    Kleesiek K, Reinards R, Brackertz D, Neumann S, Lang H, Greiling H. Granulocyte elastase as a new biochemical marker in the diagnosis of chronic joint diseases. Rheumatol Int 1986; 6: 161–169.CrossRefGoogle Scholar
  4. 4.
    Kleesiek K, Reinards R, Wolf B, Okusi J, Greiling H. UDP-D-xylose: proteoglycan core protein β-D-xylosyltransferase: a new marker of cartilage destruction in chronic joint diseases. J Clin Chem Biochem 1987; in press.Google Scholar
  5. 5.
    Barret AJ. The possible role of neutrophilic proteinases in damage to articular cartilage. Agents Actions 1978; 8: 11–18.CrossRefGoogle Scholar
  6. 6.
    Velvart M, Fehr K, Baici A, et al. Degradation in vivo of articular cartilage in rheumatoid arthritis by leucocyte elastase from polymorphonuclear leucocytes. Rheumatol Int 1981; 1: 121–130.CrossRefGoogle Scholar
  7. 7.
    Bartholomew JS, Lowther DA, Handley CJ. Changes in proteoglycan biosynthesis following leukocyte elastase treatment of bovine articular cartilage in culture. Arthritis Rheum 1984; 27: 905–912.CrossRefGoogle Scholar
  8. 8.
    Barrett AJ. The enzymic degradation of cartilage matrix. In: Burleigh PMC, Poole PR, eds. Dynamics of connective tissue macromolecules. Amsterdam: Elsevier-North Holland, 1975; 189–226.Google Scholar
  9. 9.
    Martel-Pelletier J, Cloutier J-M, Howell D, Pelletier J-P. Human rheumatoid arthritic cartilage and its neutral proteoglycan-degrading proteases — The effect of antirheumatic drugs. Arthritis Rheum 1985; 28: 405–412.CrossRefGoogle Scholar
  10. 10.
    Roughley PJ. The degradation of cartilage proteoglycans by tissue proteinases. Proteoglycan heterogeneity and the pathway of proteolytic degradation. Biochem J 1977; 167: 639–646.Google Scholar
  11. 11.
    Keiser H, Greenwald RA, Feinstein G, Janoff A. Degradation of cartilage proteoglycan by human leukocyte granule neutral proteases: a model of joint injury. I. Penetration of enzyme into rabbit articular cartilage and release of 35SO4 =-labeled material from the tissue. J Clin Invest 1976; 57: 615–624.CrossRefGoogle Scholar
  12. 12.
    Bader DL, Kempson GE, Barrett AJ, Webb W. The effects of leucocyte elastase on the mechanical properties of adult human articular cartilage in tension. Biochim Biophys Acta 1981; 677: 103–108.Google Scholar
  13. 13.
    Kempson GE, Tuke MA, Dingle JT, Barrett AJ, Horsfield PH. The effects of proteolytic enzymes on the mechanical properties of adult human articular cartilage. Biochim Biophys Acta 1976; 428: 741–760.Google Scholar
  14. 14.
    Carp H, Janoff A. Potential mediators of inflammation. Phagocyte-derived oxidants suppress the elastase-inhibitory capacity of alpha1: proteinase inhibitor in vitro. J Clin Invest 1980; 66: 987–995.CrossRefGoogle Scholar
  15. 15.
    Zaslow MC, Clark RA, Stone PJ, Galore JD, Snider GL, Franzblau C. Human neutrophil elastase does not bind to alpha1-protease inhibitor that has been exposed to activated human neutrophils. Am Rev Resp Dis 1983; 128: 434–439.Google Scholar
  16. 16.
    Wong S, Halliwell B, Richmond R, Skowroneck W. The role of superoxide and hydroxyl radicals in the degradation of hyaluronic acid induced by metal ions and by ascorbic acid. J Inorg Biochem 1981; 14: 127–134.CrossRefGoogle Scholar
  17. 17.
    Greenwald RA, Moy WW. Effect of oxygen-derived free radicals on hyaluronic acid. Arthritis Rheum 1980; 23: 455–463.CrossRefGoogle Scholar
  18. 18.
    Shiozawa S, Shiozawa K, Fujita T. Morphologic observations in the early phase of the cartilage-pannus junction. Light and electron microscopy studies of active cellular pannus. Arthritis Rheum 1983; 26: 472–478.CrossRefGoogle Scholar
  19. 19.
    Dingle JT, Saklatvala J, Hembrey R, Tyler J, Fell HB, Jubb R. A cartilage catabolic factor from synovium. Biochem J 1979; 184: 177–180.Google Scholar
  20. 20.
    Ohlsson K, Olsson I. Neutral proteases of human granulocytes. III. Interaction between human granulocyte elastase and plasma protease inhibitors. Scand J Clin Lab Invest 1974; 34: 349–355.CrossRefGoogle Scholar
  21. 21.
    Goldstein JRA, Hoffstein S, Gallin J, Weissmann G. Mechanisms of lysosomal enzyme release from human leukocytes. Microtubule assembly and membrane fusion induced by a component of complement. Proc Natl Acad Sci USA 1973; 70: 2916–2920.CrossRefGoogle Scholar
  22. 22.
    Klempner MS, Dinarello CA, Gallin JI. Human leukocytic pyrogen induces release of specific granule contents from human neutrophils. J Clin Invest 1978; 61: 1330–1336.CrossRefGoogle Scholar
  23. 23.
    Neumann S, Gunzer G, Hennrich N, Lang H. “PMN-Elastase Assay”: Enzyme immunoassay for human polymorphonuclear elastase complexed with α 1-proteinase inhibitor. J Clin Chem Clin Biochem 1984; 22: 693–697.Google Scholar
  24. 24.
    Rodén L. Structure and metabolism of connective tissue proteoglycans. In: Lennarz WJ, ed. The biochemistry of glycoproteins and proteoglycans. New York: Plenum Press, 1980; 267–371.Google Scholar
  25. 25.
    Morriss FH Jr, Fitzgerald B, Riddle LM. Fetal cartilage xylosyltransferase activity and skeletal growth in sheep. Pediat Res 1985; 19: 1240–1243.CrossRefGoogle Scholar
  26. 26.
    Rodén L, Koerner T, Olson C, Schwartz NB. Mechanisms of chain initiation in the biosynthesis of connective tissue polysaccharides. Fed Proc 1985; 44: 373–380.Google Scholar
  27. 27.
    Hoffmann HP, Schwartz NB, Rodén L, Prockop DJ. Location of xylosyltransferase in the cisternae of the rough endoplasmic reticulum of embryonic cartilage cells. Connect Tissue Res 1984; 12: 151–163.CrossRefGoogle Scholar
  28. 28.
    Stoolmiller AC, Horwitz AL, Dorfman A. Biosynthesis of the chondroitin sulfate proteoglycan. Purification and properties of xylosyltransferase. J Biol Chem 1972; 247: 3525–3532.Google Scholar
  29. 29.
    Campbell P, Jacobsson I, Benzing-Purdie L, Rodén L, Fessler JH. Silk — a new substrate for UDP-D-xylose: proteoglycan core protein β-D-xylosyltransferase. Anal Biochem 1984; 137: 505–516.CrossRefGoogle Scholar
  30. 30.
    Olson CA, Krueger R, Schwartz NB. Deglycosylation of chondroitin sulfate proteoglycan by hydrogen fluoride in pyridine. Anal Biochem 1985; 146: 232–237.CrossRefGoogle Scholar
  31. 31.
    Edge ASB, Faltynek CR, Hof L, Reichert LE Jr, Weber P. Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal Biochem 1981; 118: 131–137.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • K. Kleesiek
    • 1
  • R. Reinards
    • 2
  • H. Greiling
    • 2
  1. 1.Institute of Laboratory and Transfusion MedicineHeart Center Northrhine-WestfaliaBad OeynhausenGermany
  2. 2.Department of Clinical Chemistry and PathobiochemistryAachen University of TechnologyAachenGermany

Personalised recommendations