Skip to main content

Site-Directed Mutagenesis of Elongation Factor Tu

  • Chapter
Metabolism and Enzymology of Nucleic Acids

Abstract

Elongation factor Tu (EF-Tu), a monomeric protein of 393 amino acid residues (M.W. 43,000), is the most abundant protein in E.coli and one of the best studied guanine nucleotide binding proteins, a family of enzymes involved in signal transduction in higher and lower organisms (for references see Bosch et al., 1984; Gilman, 1984; Parmeggiani and Swart, 1985; Bourne, 1986). These proteins bind GTP and GDP, are able to hydrolyze GTP and show typical homologies in their primary structures, especially in the N-terminal 150–200 amino acids. The finding that the ras p21 protein, a mutant variant of which is responsible for oncogenic transformation, is a guanine nucleotide binding protein (Scolnick et al., 1979) further emphasizes the importance of this family. EF-Tu is an essential component of protein biosynthesis, acting as the carrier of aa-tRNA to the ribosome (for references, see Milled: & Weissbach, 1977). As with the other guanine nucleotide binding proteins, GTP induces the active form of the factor: only EF-Tu·GTP is capable of interacting with aa-tRNA, forming a ternary complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bosch, L., Kraal B., Van der Meide, P.H., Duisterwinkel, F.J., Van Noort, 1983, Prog. Nucleic Acid Res. Mol. Biol., 20; 91–126.

    Google Scholar 

  • Bourne, H.R. 1986, Nature 321; 814–816.

    Article  PubMed  CAS  Google Scholar 

  • Dente, L., Cesareni, G., Cortese, R. 1983, Nucl. Acids Res. 11; 1645–1655.

    Article  PubMed  CAS  Google Scholar 

  • Fasano, O., Bruns, W., Crechet, J.B., Sander, G., Parmeggiani, A., 1978, Eur. J. Biochem., 124; 53–58.

    Google Scholar 

  • Fasano, O., De Vendittis, E., Parmeggiani, A., 1982, J. Biol. Chem., 257; 3145–3150.

    PubMed  CAS  Google Scholar 

  • Gilman, A.G. 1984, Cell, 36; 577–579.

    Article  PubMed  CAS  Google Scholar 

  • Halliday, K.R., 1983, J. Cyclic Nucl. Phosph. Res. 9; 435–448.

    Google Scholar 

  • Jurnak, F., 1985; Science 230; 32–36.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, W., Shughart, K., Fritz, H.-J. 1982; Nucl. Acids Res., 10; 6475–6485.

    Article  PubMed  CAS  Google Scholar 

  • La Cour, T.F.M., Nyborg, J., Thirup, S., Clark, B.F.C., 1985, Embo J. 4; 2385–23886.

    PubMed  Google Scholar 

  • Lebermann, R., Egner, U. 1984, Embo J., 3; 339–341.

    Google Scholar 

  • Master, S.B., Stroud, R.M., Bourne, H.R. 1986, Protein Engineering, 1; 47–54.

    Google Scholar 

  • McCormick, F., Clark, B.F.C., La Cour, T.F.M., Kjeldgaard, M., Norskov-Lauritsen, L., Nyborg. 1985, Science, 230; 78–82.

    Article  PubMed  CAS  Google Scholar 

  • Miller, D.L., Weissbach H. 1977, in: “Molecular Mechanisms in Protein Biosynthesis,” Weissbach, H., Pestka, S., eds., pp. 323–373, Academic Press, New York.

    Google Scholar 

  • Parmeggiani, A., Sander, G. 1981, Molec. Cell Biochem., 35; 129–158.

    Article  PubMed  CAS  Google Scholar 

  • Parmeggiani, A., Swart, G.W.M., 1985, Annu. Rev. Microbiol. 39; 557–577.

    Article  PubMed  CAS  Google Scholar 

  • Parmeggiani, A., Anborgh, P.H., Canceill, D., Jacquet, J., Jonak, J., Merola, M., Mortensen, K.K., Swart, G.W.M. 1986, in “Structure, Function and Genetics of Ribosomes,” Hardesty, B. & Kramer, G., eds., pp. 672–685, Springer Verlag, New York.

    Google Scholar 

  • Permeggiani, A., Swart, G.W.M., Mortensen, K.K., Jensen, M., Dente, L., Cortese, R., 1987, Proc. Natl. Acad. Sci., in print, U.S.A.

    Google Scholar 

  • Remaut, E., Tsao, H., Fiers W. 1983, Gene, 22; 103–113.

    Article  PubMed  CAS  Google Scholar 

  • Scolnick, E.M., Papageorge A.G., Shih, T.Y. 1979, Proc. Natl. Acad. Sci., U.S.A., 76; 5335–5339.

    Article  Google Scholar 

  • Swart, G.W.M., Merola, M., Guesnet, J., Parmeggiani, A. 1984, in “Metabolism and Enzymology of Nucleic Acids Including Gene Manipulations 5, Zelinka, J. & Balan, J., eds., pp. 277–288, Slovak Academy of Sciences, Bratislava.

    Google Scholar 

  • Swart, G.W.M., Parmeggiani, A., Kraal, B., Bosch, L., 1987, Biochemistry. 26; 2047–2054.

    Article  PubMed  CAS  Google Scholar 

  • Swart, G.W.M., 1987, in “The Polypeptide Chain Elongation Factor Tu from E.coli. Characterization of Mutants and Protein Engineering,” Ph.D. Thesis, Leiden, pp. 83–119.

    Google Scholar 

  • Van der Meide, P.H., Vijgenboom, E., Talens, A., Bosch, L. 1983, Eur. J. Biochem., 130; 397–407.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Parmeggiani, A. et al. (1988). Site-Directed Mutagenesis of Elongation Factor Tu. In: Zelinka, J., Balan, J. (eds) Metabolism and Enzymology of Nucleic Acids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0749-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0749-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8063-7

  • Online ISBN: 978-1-4613-0749-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics