Bioaccumulation of Polychlorinated Biphenyls in Canadian Wildlife

  • Ross J. Norstrom


There are 209 possible structures arising from substitution of one to ten chlorine atoms on the biphenyl nucleus. Ballschmiter and Zell1 have presented a shorthand form of numbering these components using rules developed by the International Union of Pure and Applied Chemistry (IUPAC), which has been adopted for this paper. This numbering system has gained a high degree of acceptance because it offers an alternative to arbitrary “Peak X” identifications based on order of elution on a chromatogram, and cumbersome structural formulae. The latter numbering system and stereochemically equivalent positions, ortho (o), meta (m) and para (p) are:


Great Lake Ringed Seal Peregrine Falcon Herring Gull Canadian Wildlife 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ballschmiter and M. Zell, Analysis of polychlorinated biphenyls (PCB) by glass capillary chromatography, Fres. Z. Anal. Chem. 302: 20 (1980).CrossRefGoogle Scholar
  2. 2.
    O. Hutzinger, S. Safe and V. Zitko, “The Chemistry of PCB’s,” CRC Press, Cleveland (1974).Google Scholar
  3. 3.
    National Academy of Sciences, “Polychlorinated Biphenyls,”: National Academy of Sciences, Washington, D.C. (1979).Google Scholar
  4. 4.
    D.L. Grant, Regulation of PCBs in Canada, Ch. 27, in:“PCBs, Human and Environmental Hazards,” Butterworth Publishers, Boston (1983).Google Scholar
  5. 5.
    R.L. Durfee, G. Contos, F.C. Whitmore, J.D. Barden, E.E. Hackman and R.A. Westin, “PCBs in the United States - industrial use and environmental distributions,” EPA 560/6-76-005 (NTIS No. PB-252012), U.S. E.P.A., Washington, D.C. (1976).Google Scholar
  6. 6.
    D. Erickson, Physical, chemical, commercial, environmental and biological properties, Ch. 2 in: “Analytical Chemistry of PCBs,” Butterworth Publishers, Boston (1986).Google Scholar
  7. 7.
    T.J. Murphy, L.J. Formanski, B. Brownawell and J.A. Meyer, Polychlorinated biphenyl emissions to the atmosphere in the Great Lakes region. Municipal landfills and incinerators, Environ. Sci. Technol. 19: 942 (1985).CrossRefGoogle Scholar
  8. 8.
    S. Jensen, A.G. Johnels, M. Olsson and G. Otterlind, DDT and PCB in marine animals from Swedish waters, Nature 224: 247 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    A.V. Holden, Monitoring organochlorine contamination of the marine environment by the analysis of residues in seals, Marine Pollution and Sea Life, Fishing News ( Books) Ltd., London (1970).Google Scholar
  10. 10.
    S. Jensen and G. Sundstrom, Structures and levels of most chlorobiphenyls in human adipose tissue, Ambio 3: 70 (1974).Google Scholar
  11. 11.
    F.M. D’Itri and M.A. Kamrin, eds., “PCBs, Human and Environmental Hazards,” Butterworth Publishers, Boston (1983).Google Scholar
  12. 12.
    S. Safe, Polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs): biochemistry, toxicology, and mechanism of action, in: “CRC Critical Reviews in Toxicology,” CRC Press, Cleveland (1985).Google Scholar
  13. 13.
    NRCC, “Polychlorinated Biphenyls: Biological Criteria for an Assessment of Their Effects on Environmental Quality,” NRCC No. 16077 National Research Council of Canada, Ottawa, Ont. (1978).Google Scholar
  14. 14.
    D. Sissons and D. Welti, Structural identification of polychlorinated biphenyls in commerical mixtures by gas-liquid chromatography, nuclear magnetic resonance and mass spectrometry, J. Chromatog. 60: 15 (1971).CrossRefGoogle Scholar
  15. 15.
    M. D. Mullin, C.M. Pochini, S. McCrindle, M. Romkes, S.H. Safe and L.M. Safe, High-resolution PCB analysis: synthesis and chromatographic properties of all 209 PCB congeners, Environ. Sci. Technol. 18: 468 (1984).CrossRefGoogle Scholar
  16. 16.
    P. Mineau, G.A. Fox, R.J. Norstrom, D.V. Weseloh, D.J. Hallett and J.A. Ellenton, Using the Herring Cull to monitor levels and effects of organocholorine contamination in the Great Lakes, Ch. 19 in: “Toxic Contaminants in the Great Lakes,” John Wiley and Sons, New York (1984).Google Scholar
  17. 17.
    P.A. Pearce, J.E. Elliott, D.B. Peakall and R.J. Norstrom, “Organochlorine contaminants in eggs of seabirds in the northwest Atlantic, 1968–1984,” Canadian Wildlife Service manuscript (in prep.).Google Scholar
  18. 18.
    J.E. Elliott, R.J. Norstrom and J.A. Keith, “Organochlorines and eggshell thinning in Gannets from eastern Canada, 1968–1984,” Canadian Wildlife Service manuscript (in prep.).Google Scholar
  19. 19.
    D.G. Noble and J.E. Elliott, “Environmental contaminants in Canadian Seabirds, 1968–1985,” Technical Report Series No. 13, Canadian Wildlife Service, Ottawa, Canada (1986).Google Scholar
  20. 20.
    D.G. Noble and J.E. Elliott, “Environmental contaminants in Canadian Seabirds, 1968–1985,” Technical Report Series No. 13, Canadian Wildlife Service, Ottawa, Canada (1986).Google Scholar
  21. 21.
    R.J. Norstrom, M. Simon, D.C.G. Muir and R.E. Schweinsburg, Organochlorine contaminants in Arctic marine food chains: identification, geographical distribution and temporal trends in Polar Bears, (submitted to Environ. Sci. Technol., 1987 ).Google Scholar
  22. 22.
    D.C.G. Muir, R.J. Norstrom and M. Simon, Organochlorines in Arctic marine food chains: accumulation of specific PCB congeners and chlordane-related compounds, (submitted to Environ. Sci. Technol., 1987 ).Google Scholar
  23. 23.
    D.B. Peakall, R.J. Norstrom, A.D. Rahimtula and R.D. Butler, Characterization of mixed-function oxidase systems of the nestling Herring Gull and its implications for bioeffects monitoring, Environ. Toxicol. Chem. 5: 379 (1986).CrossRefGoogle Scholar
  24. 24.
    R.J. Norstrom, M. Simon and M.J. Mulvihill, A gel-permeation/column chromatography method for the determination of CDDs in animal tissue, Intern. J. Environ. Anal. Chem. 23: 267 (1986).CrossRefGoogle Scholar
  25. 25.
    M. Mullin, Workshop on High Resolution PCB Analysis, Large Lakes Research Station, U.S. E.P.A., Grosse Ile, Michigan, May 1985.Google Scholar
  26. 26.
    A.J. Lieb, D.D. Bills and R.O. Sinnhuber, Accumulation of dietary polychlorinated biphenyls (Aroclor 1254) by Rainbow Trout (Salmo gairdneri), J. Agr. Food Chem. 22: 638 (1974).CrossRefGoogle Scholar
  27. 27.
    R.J. Norstrom, D.J. Hallett and R.A. Sonstegard, Coho salmon (Oncorhynchus k1sutch) and Herring Gulls (Larus argentatus) as indicators of organochlorine contamination in Lake Ontario, J. Fish. Res. Board Can. 35: 1401 (1978).CrossRefGoogle Scholar
  28. 28.
    R. Hinz and F. Matsumura, Comparative metabolism of PCB isomers by three species of fish and the rat, Bull. Environ. Contam. Toxicol. 18: 631 (1977).CrossRefGoogle Scholar
  29. 29.
    V. Weigelt, Kapillargaschromatographische PCB-musteranalyse mariner Spezies - Betrachtungen zwischen Anreicherung and chlor Substitution ausgewahlter PCB-componenten in marinen Organismen aus der deutschen Bucht, Chemosphere 15: 289 (1986).CrossRefGoogle Scholar
  30. 30.
    G. Sundstrom, O. Hutzinger and S. Safe, The metabolism of chlorobiphenyls - a review, Chemosphere 5: 267 (1976).CrossRefGoogle Scholar
  31. 31.
    F.M.S. Wolff, J. Thornton, A. Fishbein, R. Lilis and I.J. Selikoff, Disposition of PCB congeners in occupationally exposed persons, Toxicol. Appl. Pharmacol. 62: 294 (1982).Google Scholar
  32. 32.
    S. Kato, J.D. McKinney and H.B. Matthews, Metabolism of symmetrical hexachlorobiphenyl isomers in the rat, Toxicol. Appl. Pharmacol. 53: 389 (1980).CrossRefGoogle Scholar
  33. 33.
    I.G. Sipes, M.L. Slocumb, D.F. Perry and D.E. Carter, 2,4,5,2,4,5 hexachlorobiphenyl: distribution, metabolism and excretion in the dog and monkey, Toxicol. Appl. Pharmacol. 65: 264 (1982).CrossRefGoogle Scholar
  34. 34.
    R.J. Norstrom, A.P. Gilman and D.J. Hallet, Total organically-bound chlorine and bromine in Lake Ontario Herring Gull eggs, 1977, by instrumental neutron activation and chromatographic methods, Sci. Total Environ. 20: 217 (1981).CrossRefGoogle Scholar
  35. 35.
    R.J. Norstrom, T.P. Clark and D.V. Weseloh, Great Lakes monitoring using Herring Gulls, Ch. 8 in:“Hazardous Contaminants in Ontario: Human and Environmental Effects,” Institute for Environmental Studies, U. of Toronto, Toronto, Ontario (1985).Google Scholar
  36. 36.
    C.H. Walker, Species variations in some hepatic microsomal enzymes, Progr. Drug Metab. 5: 113 (1980).Google Scholar
  37. 37.
    C.H. Walker, Species variations in some hepatic microsomal enzymes, Progr. Drug Metab. 5: 113 (1980).Google Scholar
  38. 38.
    T. Rozman, E. Scheufler and K. Rozman, Effect of partial jejunectomy and colectomy on the disposition of hexachlorobenzene in rats treated or not treated with hexadecane, Toxicol. Appl. Pharmacol. 78: 421 (1985).CrossRefGoogle Scholar
  39. 39.
    S.J. Eisenreich, B.B. Looney and J.D. Thornton, Airborne organic contaminants in the Great Lakes ecosystem, Environ. Sci. Technol. 15: 30 (1981).CrossRefGoogle Scholar
  40. 40.
    J.O. Nriagu, ed., “Toxic Contaminants in the Great Lakes,” John Wiley and Sons, New York (1984).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Ross J. Norstrom
    • 1
  1. 1.Canadian Wildlife Service National Wildlife Research CentreEnvironment CanadaOttawaCanada

Personalised recommendations