Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 243))

Abstract

The main metabolic product of the fatty acid arachidonic acid (AA) in vascular tissue is prostacyclin, a potent vasodilator and inhibitor of platelet aggregation (1). In contrast, in platelets AA is mainly converted to thromboxane A2, which is a potent vasoconstrictor and inducer of platelet aggregation. An imbalance in the formation or the interaction between these two AA metabolites has been implicated in the underlying process of various thrombotic conditions as well as of atherosclerosis (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moncada, S., Gryglewski, R., Bunting, S. and Vane, J.R., An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature, 263:663 (1976).

    Article  PubMed  CAS  Google Scholar 

  2. Moncada, S., Biological importance of prostacyclin. Brit. J. Pharmacol. 76:3 (1982).

    CAS  Google Scholar 

  3. Furchgott, R.F. and Zawadzki, J.V., The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature, 288:373 (1980).

    Article  PubMed  CAS  Google Scholar 

  4. Palmer, R.M.J., Ferrige, A.G. and Moncada, S., Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 327:524 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. Moncada, S., Prostacyclin - Discovery and biological importance, m: Prostaglandins: Research and Clinical Update, G.L. Longenecker, S.W. Schaffer ed., Alpha Editions, Minneapolis, pp. 1-39, (1985).

    Google Scholar 

  6. Moncada, S., Herman, A.G., Higgs, E.A. and Vane, J.R., Differential formation of prostacyclin (PGX or PGL) by layers of the arterial wall. An explanation for the antithrombotic properties of vascular endothelium, Thromb. Res. 11:323 (1977).

    Article  PubMed  CAS  Google Scholar 

  7. Weksler, B.B., Marcus, A.J. and Jaffe, E.A., Synthesis of prostaglandin L (prostacyclin) by cultured human and bovine endothelial cells. Proc. Natl. Acad. Sci. USA, 74:3922 (1977).

    Article  PubMed  CAS  Google Scholar 

  8. Eldor, A., Falcone, D.J., Hajjar, D.P., Minick, C.R. and Weksler, B.B., Recovery of prostacyclin production by de-endothelialized rabbit aorta. Critical role of neointimal smooth muscle cells. J. Clin. Invest. 67:735 (1981).

    Article  PubMed  CAS  Google Scholar 

  9. Boeynaems, J.M., Galand, N. and Ketelbant, P., Prostacyclin production by the de-endothelialized rabbit aorta. J. Clin. Invest. 76:7 (1985).

    Article  PubMed  CAS  Google Scholar 

  10. Beetens, J.R., Coene, M-C., Verheyen, A., Zonnekeyn, L. and Herman, A.G., Biphasic response of intimaf prostacyclin production during the development of experimental atherosclerosis. Prostaglandins, 32:319 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. Moncada, S., Gryglewski, R.J., Bunting, S. and Vane, J.R., A lipid peroxide inhibits the enzyme in blood vessel microsomes that generates from prostaglandin endoperoxides the substance (prostaglandin X) which prevents platelet aggregation. Prostaglandins, 12:715 (1976).

    Article  PubMed  CAS  Google Scholar 

  12. Tremoli, E., Socini, A., Petroni, A. and Galli, C., Increased platelet aggregability is associated with increased prostacyclin production by vessel walls in hypercholesterofemic rabbits. Prostaglandins, 24:397 (1982).

    Article  PubMed  CAS  Google Scholar 

  13. Fitzgerald, G.A., Smith, B., Pedersen, A.K. and Brash, A.R., Increased prostacyclin biosynthesis in patients with severe atherosclerosis and platelet activation. New Engl. J. Med., 310:1065 (1984).

    Article  PubMed  CAS  Google Scholar 

  14. Hajjar, D.P. and Weksler, B.B., Metabolic activity of cholesteryl esters in aortic smooth muscle cells is altered by prostaglandins L and E r J. Lipid Res., 24:1176 (1983).

    PubMed  CAS  Google Scholar 

  15. Orekhov, A.N., Tertov, V.V., Masurov, A.V., Andreeva, E.R., Repin, V.S. and Smirnov, V.N., “Regression” of atherosclerosis in cell culture: effects of stable prostacyclin analogues, Drug Dev. Res., 9:189 (1986).

    Article  CAS  Google Scholar 

  16. Moncada, S. and Higgs, E.A., Arachidonate metabolism in blood cells and the vessel wall. Clin. Haematol., 15:273 (1986).

    PubMed  CAS  Google Scholar 

  17. Willis, A.L., Smith, D.L., Vigo, C. and Kluge, A.F., Effects of prostacyclin and orally active stable mimetic agent RS-93427-007 on basic mechanisms of atherogenesis. Lancet, ii:682 (1986).

    Article  Google Scholar 

  18. Ross, R,, The pathogenesis of atherosclerosis - an update. New Engl. J. Med., 314:488 (1986).

    Article  PubMed  CAS  Google Scholar 

  19. Moncada, S. and Higgs, E.A., Prostaglandins in the pathogenesis and prevention of vascular disease. Blood Rev., 1:141 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. Moncada, S., Clinical use of prostacyclin. in: Advanced Medicine Vol. 22, D.R. Triger, ed., Baillere Tindall, London, pp. 323–332, (1986).

    Google Scholar 

  21. Furchgott R.F., The role of endothelium in the responses of vascular smooth muscle to drugs. Ann. Rev. Pharmacol. Toxicol., 24:175 (1984).

    Article  CAS  Google Scholar 

  22. Moncada, S., Palmer, R.M.J, and Higgs, E.A., Generation of prostacyclin and endothelium-derived relaxing factor from endothelial cells, in: Biology and pathology of platelet-vessel wall interactions, G. Jolles, J.Y. Legrand, A. Nurden, eds., Academic Press, London, pp. 289–304, (1986).

    Google Scholar 

  23. Gryglewski, R.J., Palmer, R.M.J, and Moncada, S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature, 320:454 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. Rubanyi, G.M. and Vanhoutte, P.M., Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am. J. Physiol., 250:H–222 (1986).

    Google Scholar 

  25. Moncada, S., Palmer, R.M.J, and Gryglewski, R.J., Mechanism of action of some inhibitors of endothelium-derived relaxing factor. Proc. Natl. Acad. Sci. USA, 83:9164 (1986).

    Article  PubMed  CAS  Google Scholar 

  26. Martin, W., Smith, J.A. and White, D.G., The mechanisms by which haemoglobin inhibits the relaxation of rabbit aorta induced by nitrovasodilators, nitric oxide or bovine retractor penis inhibitory factor. Br. J. Pharmacol., 89:562 (1986).

    Google Scholar 

  27. Radomski, M.W., Palmer, R.M.J, and Moncada, S., Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br. J. Pharmacol., 92:181 (1987).

    PubMed  CAS  Google Scholar 

  28. Radomski, M.W., Palmer, R.M.J. and Moncada, S., The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br. J. Pharmacol., 92:639 (1987).

    PubMed  CAS  Google Scholar 

  29. Rapoport, R.M. and Murad, F., Agonist induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cyclic GMP. Circ. Res. 52:352 (1983).

    PubMed  CAS  Google Scholar 

  30. Martin, W., Villani, G.M., Jothianandan, D. and Furchgott, R.F., Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by haemoglobin and by methylene blue in the rabbit aorta. J. Pharmacol. Exp. Ther. 232:708 (1985).

    PubMed  CAS  Google Scholar 

  31. Furchgott, R.F., Studies on relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that the acid activatable inhibitory factor from bovine retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide, nri: Mechanisms of Vasodilatation, Vol. IV, P.M. Vanhoutte, ed., Raven Press, New York (1988), in press.

    Google Scholar 

  32. Ignarro, L.F., Byrns, R.E. and Wood, K.S., Biochemical and pharmacological properties of EDRF and its similarity to nitric oxide radical, hi: Mechanisms of Vasodilatation, Vol. IV, P.M. Vanhoutte, ed., Raven Press, New York (1988), in press.

    Google Scholar 

  33. Radomski, M.W., Palmer, R.M.J. and Moncada, S., The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem. Biophys. Res. Commun., 148:1482 (1987).

    Article  PubMed  CAS  Google Scholar 

  34. Hutchinson, P.J.A., Palmer, R.M.J. and Moncada, S., Comparative pharmacology of EDRF and nitric oxide on vascular strips. Eur. J. Pharmacol., 141:445, (1987).

    Article  PubMed  CAS  Google Scholar 

  35. Dale, H.H., Progress in autopharmacology. A survey of present knowledge of the chemical regulation of certain functions by natural constituents of the tissues. Bull. Johns Hopk. Hosp. 53:297, (1933).

    CAS  Google Scholar 

  36. Moncada, S., Palmer, R.M.J. and Higgs, E.A., Prostacyclin and endothelium-derived relaxing factor: biological interactions and significance, iri: Thrombosis and Haemostasis, M. Verstraete, J. Vermylen, H.R. Lijnen and J. Arnout, eds., Leuven University Press, Leuven, pp. 587–618, (1987).

    Google Scholar 

  37. Rubanyi, G.M., Romero, J.C. and Vanhoutte, P.M., Flow-induced release of endothelium-derived relaxing factor. Am. J. Physiol. 250 :H1145, (1986).

    PubMed  CAS  Google Scholar 

  38. Holtz, J., Forstermann, U., Pohl, U,, Giesler, M. and Bassenge, E., Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibition. J. Cardiovasc. Pharmacol., 6:1161, (1984).

    PubMed  CAS  Google Scholar 

  39. Owen, M.P. and Bevan, J.A., Acetylcholine induced endothelial-dependent vasodilatation increases as artery diameter decreases in the rabbit ear. Experientia, 41:1057, (1985).

    Article  PubMed  CAS  Google Scholar 

  40. Griffith, T.M., Edwards, D.H., Davies, R.LJ., Harrison, T.J. and Evans, K.T., EDRF coordinates the behaviour of vascular resistance vessels. Nature, 329:442, (1987).

    Article  PubMed  CAS  Google Scholar 

  41. Sreeharan, N., Jayakody, R.L., Senaratne, M.P.J., Thomson, A.B.R. and Kappagoda, C.T., Endothelium-dependent relaxation and experimental atherosclerosis in the rabbit aorta. Can. J. Physiol. Pharmacol., 64:1451, (1986).

    Article  PubMed  CAS  Google Scholar 

  42. Verbeuren, T.J., Jordaens, F.H., Zonnekeyn, L.L., Van Hove, C.E., Coene M-C. and Herman, A.G., Effect of hypercholesterolemia on vascular reactivity in the rabbit: 1: Endothelium-dependent and endothel ium-independent contractions and relaxations in isolated arteries of control and hypercholesteroJemic rabbits. Circ. Res., 58:552, (1986).

    PubMed  CAS  Google Scholar 

  43. Henry, P.D., Bossaller, C. and Yammamoto, H., Impaired endothelium-dependent relaxation and cyclic guanosine S’-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. Thromb. Res. (SuppL Vli) :6, (1987).

    Google Scholar 

  44. Andrews, H.E., Bruckdorfer, K.R., Dunn,, R.C. and Jacobs, M., Low-density lipoproteins inhibit endothelium-dependent relaxation in rabbit aorta. Nature, 327:237, (1987).

    Article  PubMed  CAS  Google Scholar 

  45. Forstermann, U., Properties and mechanisms of production and action of endothelium-derived relaxing factor. J. Cardiovasc. Pharmacol., 8 (Suppl10)S45, (1986).

    Article  Google Scholar 

  46. Ludmer, P.L., Selwyn, A.P., Shook, T.L., Wayne, R.R., Mudge, G.H., Alexander, R.W. and Ganz, P., Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. New Engl. J. Med., 315:1046, (1986).

    Article  PubMed  CAS  Google Scholar 

  47. Luscher, T.F. and Vanhoutte, P.M., Endothelium-dependent responses to platelets and serotonin in spontaneously hypertensive rats. Hypertension, 8:11–55, (1986).

    Google Scholar 

  48. De Mey, J.G. and Gray, S.D., Endothelium-dependent reactivity in resistance vessels. Prog. Appl. Microcirc., 8:181, (1985).

    Google Scholar 

  49. Winquist, R.J., Bunting, P.B., Baskin, E.P. and Wallace, A.A., Decreased endothelium-dependent relaxation in New Zealand genetic hypertensive rats. J. Hypertens., 2:541, (1984).

    Article  PubMed  CAS  Google Scholar 

  50. Lockette, W., Otsuka, Y., and Carretero, O., The loss of endothelium-dependent vascular relaxation in hypertension. Hypertension, 8:11–61, (1986).

    Google Scholar 

  51. Van de Voorde, J. and Leusen, I., Endothel ium-dependent and independent relaxation of aortic rings from hypertensive rats. Am. J. Physiol., 250 :H711, (1986).

    PubMed  Google Scholar 

  52. Luscher, T.F., Raij, L. arid Vanhoutte, P.M., Effect of hypertension and its reversal on endothelium-dependent relaxations in the rat aorta. J. Hypertension, 5(Suppl 5)S153, (1987).

    Google Scholar 

  53. Otsuka, Y., DiPiero, A., Hirt, E., Brennaman, B. and Lockette, W., Vascular relaxation and cGMP in hypertension. Am. J. Physiol. 254:H163, (1988).

    PubMed  CAS  Google Scholar 

  54. Brum, J.M., Sufan, Q., Lane, G. and Bove, A.A., Increased vasoconstrictor activity of proximal coronary arteries with endothelial damage in intact dogs. Circulation, 70:1066 (1984).

    Article  PubMed  CAS  Google Scholar 

  55. Fisher, C.M., Kistler, J.M. and Davis, J.M., The correlation of cerebral vasospasm and the amount of subarachnoid blood detected by computerised cranial tomography after aneurysm rupture. m: Cerebral Artery Spasm, R.H. Wilkins, ed., Baltimore, London, pp. 397-408, (1980).

    Google Scholar 

  56. Wei, E.P., Kontos, H.A., Christman, C.W., Dewitt, D.S. and Povlishock, J.T., Superoxide generation and reversal of acety Ichol ine-induced cerebral arteriolar dilation after acute hypertension. Circ. Res., 57:781, (1985).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Moncada, S. (1988). Prostacyclin, EDRF and Atherosclerosis. In: Malmendier, C.L., Alaupovic, P. (eds) Eicosanoids, Apolipoproteins, Lipoprotein Particles, and Atherosclerosis. Advances in Experimental Medicine and Biology, vol 243. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0733-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0733-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8055-2

  • Online ISBN: 978-1-4613-0733-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics