Advertisement

On Electron Transfer Reactions in Disordered Media

  • E. Canel
Part of the Institute for Amorphous Studies Series book series (EPPS)

Abstract

It is the purpose of this paper to develop unified mathematical models for electron transfer reactions in condensed media. Using these models we will discuss the main qualitative features of these processes. Electron transfer reactions in the gas phase are reasonably well understood. In some cases the reaction is direct; in others it involves the formation of an unstable quasimolecule (of lifetime 10−13sec) posessing a full set of quantum numbers.1) 2) 3) 4) Using standard “adiabatic techniques” the processes can be described theoretically.5)6) In condensed media the situation is complicated by various factors such as:
  1. (1)

    Electrostatic interactions with the solvent that modify the energy levels and wave functions of the reactants.

     
  2. (2)

    Polarization changes in the solvent.

     
  3. (3)

    Bridge formation by solvent molecules.

     
  4. (4)

    Relaxation processes which do not occur in the gas phase.

     
  5. (5)

    The symmetry of interacting orbitals.

     

Keywords

Green Function Solvent Molecule Electron Transfer Reaction Collective Mode Order Perturbation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    E. Butler, S.L. Guberman and A. Dalgarno Phys. Rev. A 16 500 1977.CrossRefGoogle Scholar
  2. 2).
    R. Johnson and M.A. Bondi Phys. Rev. A 18 996 1978.CrossRefGoogle Scholar
  3. 3).
    W.R. Green, F. Wright, J. Young and S.E. Harris Phys. Rev. Letters 43 10 1979.CrossRefGoogle Scholar
  4. 4).
    J.H. Black and A. Dalgarno Astrophysics Letters 15 79 1975.Google Scholar
  5. 5).
    L. Landau and I. Lifshitz Quantum Mechanics 2nd Ed. Pergamon PressGoogle Scholar
  6. 6).
    E.E. Nikitin and B.M. Smirnow, Sov. Phys. Usp 21 (2) 95 1978.CrossRefGoogle Scholar
  7. 7).
    See for example J. Ullstrup Theory of Electron Transfer Reactions Springer Venlag 1979.Google Scholar
  8. 8).
    J. Calef and D. Wolyness Journal of Chem. Phys. 87 3387 1983CrossRefGoogle Scholar
  9. 9).
    R. Hoffmann A. Inamura and W. Hehne Journ. Chem. Soc. 90 1499 1968.CrossRefGoogle Scholar
  10. 10).
    E. Stein and H. Taube Journal Am. Chem. Soc. 1981 103 693CrossRefGoogle Scholar
  11. A. Beretan and J.J. Hopfield Journ. Am. Chem. Soc. 106 1584 1984.CrossRefGoogle Scholar
  12. 11).
    See for example R. Kubo and M. Nagamiya Solid State Physics McGraw Hill Co. 1969.Google Scholar
  13. 12).
    E. Albrecht Symposium on Photo Physics and Photo Chemistry above 6eV Bombammes France 1985. Also T. Scott private communication.Google Scholar
  14. 13).
    W. Kohn Phys. Rev. 105 (2) 509 1957.CrossRefGoogle Scholar
  15. 14).
    T. Holstein Annals of Physics 8 325 1959.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • E. Canel
    • 1
  1. 1.The Rockefeller UniversityNew YorkUSA

Personalised recommendations