Advertisement

Metrology Potential of Scanning Laser Acoustic Microscopes Using Surface Acoustic Waves

  • W. P. Robbins
  • E. P. Rudd
  • R. K. Mueller
Part of the Acoustical Imaging book series (ACIM, volume 16)

Abstract

The use of surface acoustic wave insonification in a scanning laser acoustic microscope (SLAM) for the quantitative characterization (metrology) of the mechanical properties of the surface/near-surface of a material or of a thin film deposited on a known substrate is discussed. Quantitative measurements of the mass-loading effects of a 5000 angstrom thick tungsten film on a lithium niobate surface wave delay line were obtained at 100 MHz which agreed with theoretical values. Measurements of the SAW velocity as a function of crystalline orientation on lithium niobate were also obtained. The potential of the SLAM for vertical (depth) profiling of mechanical properties using the dispersion of the surface wave velocity as the surface wave insonification frequency is varied is discussed. Methods of easily launching surface waves on nonpiezoelectric materials without requiring special sample preparation so that these potential capabilities can be applied to a wide range of samples is discussed.

Keywords

Spatial Frequency Rayleigh Wave Lithium Niobate Mode Conversion Bulk Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Acoustic Microscopy”, Calvin F. Quate, Physics Today, p. 34, August, 1985.Google Scholar
  2. 2.
    “Acoustic Microscopy-1979”, L.W. Kessler and D.E. Yuhas, Proc. IEEE, 67, p. 526, (1979).Google Scholar
  3. 3.
    “Instrumentation ‘Seeing’ Acoustically”, R.K. Mueller and R.L. Rylander, IEEE Spectrum, p. 28, Feb., 1982.Google Scholar
  4. 4.
    “Thin Film Characterization Using a Scanning Laser Acoustic Microscope with Surface Acoustic Waves”, William P. Robbins, Rolf K. Mueller, and Eric Rudd, IEEE Trans, on Ultrasonics, Ferroelectrics, and Frequency Control, (accepted for publication).Google Scholar
  5. 5.
    “Precision Measurement of Rayleigh Wave Velocity Pertubation”, K. Liang, S.D. Bennett, B.T. Khuri-Yakub, and G.S. Kino, Appl. Phys. Lett., 41, p. 1124, (1982).ADSCrossRefGoogle Scholar
  6. 6.
    “Confocal Surface Acoustic Wave Microscoppy”, I.R. Smith and H.K. Wickramasinghe, Appl. Phys. Lett., 42, p. 411, (1983)ADSCrossRefGoogle Scholar
  7. 7.
    “Effective Elastic Constants of Thin-Film Tungsten-Si 1icide from Surface Acoustic Wave Analysis”, G.M. Crean, A. Golanski, and J.C. Oberlin, Appl. Phys. Lett., 50, p. 74, (1987)ADSCrossRefGoogle Scholar
  8. 8.
    “A New Focusing Method for Nondestructive Evaluation by Surface Acoustic Wave”, B. Nongaillard, M. Ourak, J.M. Rouvaen, M. Houze, and E. Bridoux, J. Appl. Physics, 55, p. 75, (1984)ADSCrossRefGoogle Scholar
  9. 9.
    “Fourier Transform Approach to Materials Characterization with the Acoustic Microscope”, J.A. Hildebrand, K. Liang, and S.D. Bennett, J. Appl. Physics, 54, p. 7016, (1983)ADSCrossRefGoogle Scholar
  10. 10.
    “Directional Acoustic Microscopy for Observation of Elastic Anisotropy”, J.A. Hildebrand and L.K. Lam, Appl. Physics Lett., 42, p. 413, (1983)ADSCrossRefGoogle Scholar
  11. 11.
    “Scanning Laser Acoustic Microscope Using Surface Acoustic Waves”, Rolf K. Mueller and William P. Robbins, 1984 IEEE Ultrasonics Symposium Proceedings, p. 561Google Scholar
  12. 12.
    “Characterization of Subsurface Anomalies by Elastic Surface Wave Dispersion”, B. Tittmann, G.A. Alers, R.B. Thompson, and R.A. Young, 1974 IEEE Ultrasonics Symposium Proceedings, p. 561Google Scholar
  13. 13.
    “Nondestructive Subsurface Gradient Determination”, Thomas L. Szabo, 1974 IEEE Ultrasonics Symposium Proceedings, p. 565Google Scholar
  14. 14.
    “Scanning Laser Acoustic Microscope with Digital Data Acquisition”, E.P. Rudd, R.K. Mueller, W.P. Robbins, T. Skaar, and B. Soumekh, Rev. Sci. Instruments, 58, p. 46, (1987)ADSCrossRefGoogle Scholar
  15. 15.
    Surface Wave Filters, edited by Herbert Mathews, John Wiley & Sons, New York, (1977), Ch. 1Google Scholar
  16. 16.
    Microwave Acoustics Handbook, J.3. Slobodnik, E.D. Conway, and R.T. Delmonico, editors, Vol. 1A, Air Force Cambridge Research LaboratoriesGoogle Scholar
  17. 17.
    “Optical Generation of Continuous 76-Miz Surface Acoustic Waves on YZ-Lithium Niobate”, G. Veith and M. Kowatsch, Appl. Phys. Lett., 40, p. 30, (1982)ADSCrossRefGoogle Scholar
  18. 18.
    “Theory of Laser Generation of Surface Waves Using Optically Adsorbing Coatings”, R.E. Higashi, R.K. Mueller, and W.P. Robbins, 1983 IEEE Ultrasonics Symposium Proceedings, p. 357Google Scholar
  19. 19.
    “A Model for the Electromagnetic Generation of Rayleigh and Lamb Waves”, R. Bruce Thompson, IEEE Trans, on Sonics and Ultrasonics, SU-20, p. 340, 1973Google Scholar
  20. 20.
    “Surface Wave Edge Bonded Transducers and Applications”, E. Lardat, 1974 IEEE Ultrasonics Symposium Proceedings, p. 433Google Scholar
  21. 21.
    “Surface-Elastic Wave Properties of DC-Triode Sputtered Zinc Oxide Films”, F.S. Hickernell and J.W. Brewer, Appl. Phys. Lett., 21, p. 389, (1972)ADSCrossRefGoogle Scholar
  22. 22.
    “Theory of Interdigital Couplers on Nonpiezoelectric Substrates”, G.S. Kino and R.S. Wagers, J. Appl. Physics, 44, p. 1480, (1973)ADSCrossRefGoogle Scholar
  23. 23.
    “A New Technique for Excitation of Surface and Shear Acoustic Waves on Nonpiezoelectric Materials”, B.T. Khuri-Yakab and G.S. Kino, Appl. Phys. Lett., 32, p. 513, (1978)ADSCrossRefGoogle Scholar
  24. 24.
    “Characteristics of Wedge Transducers for Acoustic Surface Waves”, Henry L. Bertoni and Theodor Tamir, IEEE Trans, on Sonics and Ultrasonics, SU-22, 415, (1975)Google Scholar
  25. 25.
    “The Design of Efficient Broadband Wedge Transducers”, J. Fraser, B.T. Khuri-Yakab, and G.S. Kino, Appl. Phys. Lett., 32, p. 698, (1978)ADSCrossRefGoogle Scholar
  26. 26.
    “Acoustic Bulk-Surface-Wave Transducer”, R.F. Humpryes and E.A. Ash, Elect. Lett., 5, p. 175, (1969)CrossRefGoogle Scholar
  27. 27.
    “Generation on UHF Surface Wave by Transduction from Bulk Wave Using Fine Corrugation Grating on GaAs”, M. Yamanishi, M. Ameda, K. Tsubouchi, T. Kawamura, and N. Mikoshiba, 1976 IEEE Ultrasonics Symposium Proceedings, p. 501Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • W. P. Robbins
    • 1
  • E. P. Rudd
    • 1
  • R. K. Mueller
    • 1
  1. 1.Department of Electrical EngineeringUniversity of MinnesotaUSA

Personalised recommendations