Iron Toxicity and Chelating Therapy

  • C. Hershko
  • G. Link
  • A. Pinson
  • S. Sarel
  • S. Grisaru
  • Y. Hasin
  • R. W. Grady

Abstract

Iron is one of the most common elements on Earth and yet, because of its low solubility in nature, iron deficiency is one of the most common forms of nutritional deficiency. Because of the biological importance of iron as a catalyzer of one-electron redox reactions, evolution has provided us with efficient mechanisms for the acquisition, transfer and storage of iron, but not with mechanisms for the excretion of excess iron. The clinical consequences of iron accumulation in hemochromatosis are manifested in abnormal function of a number of vital organs, the most important of which is the heart. In the following, I would like to focus on four aspects of iron toxicity and chelation: (a) Studies conducted in an in vitro model of iron chelation and toxicity in rat myocardial cell cultures; (b) Evidence for the clinical effectiveness of iron chelating therapy in transfusional iron overload; (c) The potential usefulness of iron chelators in diseases unrelated to iron overload, and; (d) The development of new orally active iron chelators.

Keywords

Toxicity Caffeine Malaria Adrenaline Vasculitis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Link G, Pinson A, Hershko C. J Lab Clin Med 106: 147, 1985.PubMedGoogle Scholar
  2. 2.
    Halliwell B, Gutteridge ML. Biochem J 219: 1, 1984.PubMedGoogle Scholar
  3. 3.
    Barry M, Flynn DM, Letsky EA et al. Brit Med J 2: 16, 1974.PubMedCrossRefGoogle Scholar
  4. 4.
    Modell B, Letsky EA, Flynn DM et al. Brit Med J 284: 1081, 1982.CrossRefGoogle Scholar
  5. 5.
    Wolfe L, Olivieri N, Sallan D et al. New Engl J Med 312: 1600, 1985PubMedCrossRefGoogle Scholar
  6. 6.
    Marcus RE, Davies SC, Bantock HM et al. Lancet 1: 392, 1984.PubMedCrossRefGoogle Scholar
  7. 7.
    Hyman CB, Agness CL, Rodriguez R et al. Ann N Y Acad Sci 445: 293, 1985.PubMedCrossRefGoogle Scholar
  8. 8.
    Freeman AP, Giles RW, Berdoukas VA et al. Ann Intern Med 99: 450, 1983.PubMedGoogle Scholar
  9. 9.
    Ward PA, Till GO, Kunkel R et al. J Clin Invest 72: 789, 1983.PubMedCrossRefGoogle Scholar
  10. 10.
    Bradley B, Prowse SJ, Bauling P et al. Diabetes 35: 550, 1986.PubMedCrossRefGoogle Scholar
  11. 11.
    Polson RJ, Jawad ASM, Bomford A et al. Q J Med 61: 1153, 1986.PubMedGoogle Scholar
  12. 12.
    Reichard P, Ehrenberg A. Science 221: 514, 1983.PubMedCrossRefGoogle Scholar
  13. 13.
    Estrow Z, Tawa A, Wang XH et al. Blood 69: 757, 1987.Google Scholar
  14. 14.
    Rocchi E, Gilbertini P, Cassanelli M et al. Brit J Derm 114: 621, 1986.PubMedCrossRefGoogle Scholar
  15. 15.
    Hershko C, Avramovici GS, Link G et al. J Lab Clin Med 98: 99, 1 981.Google Scholar
  16. 16.
    Hershko C, Grady RW, Link G. J Lab Clin Med 103: 337, 1984.PubMedGoogle Scholar
  17. 17.
    Kontoghiorghes GJ. Molec Pharm 30: 670, 1987.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • C. Hershko
    • 1
    • 2
    • 3
  • G. Link
    • 1
    • 2
    • 3
  • A. Pinson
    • 1
    • 2
    • 3
  • S. Sarel
    • 1
    • 2
    • 3
  • S. Grisaru
    • 1
    • 2
    • 3
  • Y. Hasin
    • 1
    • 2
    • 3
  • R. W. Grady
    • 1
    • 2
    • 3
  1. 1.Dept. MedicineShaare Zedek Med. CenterUSA
  2. 2.Dept. Nutrition, Biochemistry and CardiologyHebrew University Hadassah Med. School, Hebrew Univ. School of PharmacyJerusalemUSA
  3. 3.Dept. PediatricsCornell UniversityUSA

Personalised recommendations