Skip to main content

Role of the Natural Immune System in the Antibody Response

Regulatory Effect of NK Cells

  • Chapter
Functions of the Natural Immune System

Abstract

Natural killer (NK) cells were originally described as effector cells capable of in vitro lysis of certain tumor targets.(1) However, concurrent with the revelation of NK cell antitumor potential, it became evident that these cells are also involved in the regulation of the growth and differentiation of hematopoietic systems.(2) This was initially demonstrated by the evidence that histoincompatible bone marrow cells would grow in the NK cell-depleted, NK cell-deficient, or NK cell—immature mice but not in the NK cell-stimulated mice.(3,4) Later, the direct involvement of NK cells in murine bone marrow transplantation was demonstrated by abrogation of resistance to parental and allogeneic bone marrow grafts in mice depleted of NK cells by NK 1.1 monocloned antibody and by restoration of bone marrow graft resistance in NK cell-depleted mice by transfer of cloned NK cells.(5)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herberman, R. B., Djeu, J. Y., Kay, H. D., Ortaldo, J. R., Riccardi, C., Bonnard, G. D., Holden. H. T., Tagnani, R., Santoni, A. S., and Puccetti, P., 1979, Natural killer cells: Characteristics and regulation of activity, Immunol. Rev. 44:43–70.

    Article  PubMed  CAS  Google Scholar 

  2. Lotzová, E., 1986, NK cell role in regulation of the growth and functions of hematopoietic and lymphoid cells, in: Immunobiology of Natural Killer Cells, Volume II (E. Lotzová and R. B. Herberman, eds.), CRC Press, Boca Raton, FL, pp. 89–105.

    Google Scholar 

  3. Kiessling, R., Hochman, P. S., Häller, O., Shearer, G. M., Wigzell, H., and Cudkowicz, G., 1977, Evidence for a similar or common mechanism for natural killer cell activity and resistance to hematopoietic grafts, Eur. J. Immunol. 7:655–663.

    Article  PubMed  CAS  Google Scholar 

  4. Lotzová, E., and Savary, C. A., 1977, Possible involvement of natural killer cells in bone marrow graft rejection, Biomedicine 27:341.

    PubMed  Google Scholar 

  5. Lotzová, E., Savary, C. A., and Pollack, S. B., 1983, Prevention of rejection of allogeneic bone marrow transplantation by Nk 1.1 antiserum, Transplantation 35:490–494.

    Article  PubMed  Google Scholar 

  6. Mangan, K. F., Chikkappa, G., Bieler, L. Z., Scharfman, W. B., and Parkinson, D. R.,Regulation of human blood erythroid burst forming unit (BFU-E) proliferation by T lymphocyte subpopulations defined by Fc receptors and monoclonal antibodies, Blood 59:990–996.

    Google Scholar 

  7. Mangan, K. F., Chikkappa, G., and Farley, P. C., 1982, T gamma (Tγ) cells suppress growth of erythroid colony-forming units in vitro in the pure red cell aplasia of B cell chronic lymphocytic leukemia, J. Clin. Invest. 70:1148–1156.

    Article  PubMed  CAS  Google Scholar 

  8. Barr, R. D., and Stevens, C. A., 1982, The role of autologous helper and suppressor T cells in the regulation of human granulopoiesis, Am. J. Hematol. 12:323–326.

    Article  PubMed  CAS  Google Scholar 

  9. Hansson, M., Beran, M., Andersson, B., and Kiessling, R., 1982, Inhibition of in vitro granulopoiesis by autologous and allogeneic human NK cells, J. Immunol. 129:126–132.

    PubMed  CAS  Google Scholar 

  10. Mangan, K. F., Hartnett, M. E., Matis, S. A., Winkelstein, A., and Abo, T., 1984, Natural killer cells suppress human erythroid stem cell proliferation in vitro, Blood 63:260–269.

    PubMed  CAS  Google Scholar 

  11. Ono, A., Amos, D. E., and Koren, H. S., 1977, Selective cellular natural killing against human leukemic T cells and thymus, Nature 266:546–548.

    Article  PubMed  CAS  Google Scholar 

  12. Hansson, M., Kiessling, R., Andersson, B., Karre, K., and Roder, J., 1979, NK cell-sensitive T-cell subpopulation in thymus: Inverse correlation to host NK activity, Nature 278:174–176.

    Article  PubMed  CAS  Google Scholar 

  13. Hansson, M., Kiessling, R., and Andersson, B., 1981, Human fetal thymus and bone marrow contain target cells for natural killer cells, Eur. J., Immunol. 11:8–12.

    Article  CAS  Google Scholar 

  14. Pistoia, U., Nocera, A., Ghio, R., Leprini, A., Perata, A., Pistone, H., and Ferravini, M., 1983, PHA-induced human T cell colony formation: Enhancing effect of large granular lymphocytes, Exp. Hematol. 11:249–259.

    PubMed  CAS  Google Scholar 

  15. Suzuki, R., Suzuki, S., Ebina, N., and Kumagai, K., 1985, Suppression of alloimmune cytotoxic T lymphocytes (CTL) generation by depletion of NK cells and restoration by interferon and/or interleukin 2, J. Immunol. 134:2139–2148.

    PubMed  CAS  Google Scholar 

  16. Scala, G., Allavena, P., Ortaldo, J. R., Herberman, R. B., and Oppenheim, J. J., 1985, Subsets of human large granular lymphocytes (LGL) exhibit accessory cell functions, J. Immunol. 134:3049–3055.

    PubMed  CAS  Google Scholar 

  17. Abrruzo, L. B., and Rowley, D. A., 1983, Homeostasis of the antibody response: Immunoregulation by NK cells, Science 222:581–585.

    Article  Google Scholar 

  18. Arai, S., Yamamoto, H., Itoh, K., and Kumagai, K., 1983, Suppressive effect of human natural killer cells on pokeweed mitogen-induced B cell differentiation, J. Immunol. 131:651–657.

    PubMed  CAS  Google Scholar 

  19. Beller, D. I., and Unanue, E. R., 1980, la antigens and antigen-presenting function of thymic macrophages, J. Immunol. 124:1433–1440.

    PubMed  CAS  Google Scholar 

  20. Inaba, K., Steinman, R. M., Van Voorhis, W. D., and Muramatsu, S., 1983, Dendritic cells are critical accessory cells for thymus-dependent antibody responses in mouse and in man, Proc. Natl. Acad. Sci USA 80:6041–6045.

    Article  PubMed  CAS  Google Scholar 

  21. Beller, D. I., 1983, Functinal significance of the regulation of macrophage la expression, in: Progress in Immunology (Y. Yamamura and T. Tada, eds.), Academic Press, Tokyo, pp. 985–988.

    Google Scholar 

  22. Farr, A. G., Kiely, J.-M., and Unaue, E. R., 1979, Macrophage-T cell interactions involving Listeria monocytogenes—role of the H-2 gene complex, J. Immunol. 122:2395–2404.

    PubMed  CAS  Google Scholar 

  23. Sorensen, C. M., and Pierce, C. W., 1981, Haplotype-specific suppression of antibody responses in vitro. I. Generation of genetically restricted suppressor T cells by neonatal treatment with semiallogeneic spleen cells, J. Exp. Med. 154:35–47.

    Article  PubMed  CAS  Google Scholar 

  24. Maier, T., Holda, J. H., and Claman, H. N., 1985, Graft-vs-host reactions (GVHR) across murine histocompatibility barriers. II. Development of natural suppressor cell activity, J. Immunol. 135:1644–1651.

    PubMed  CAS  Google Scholar 

  25. Farrar, J. J., Benjamin, W. R., Hilfiker, M. L., Howard, M., Farrar, W. L., and Fuller-Farrar, J., 1982, The biochemistry, biology, and role of interleukin 2 and the induction of cytotoxic T cell and antibody-forming cell response, Immunol. Rev. 63:129–166.

    Article  PubMed  CAS  Google Scholar 

  26. Scala, G., and Oppenheim, J. J., 1983. Antigen presentation by human monocytes: Evidence for stimulant processing and requirement for interleukin 1, Nature 309:56–59.

    Article  Google Scholar 

  27. Pike, B. L., and Nossal, G. J. V., 1985. Interleukin 1 can act as a B-cell growth and differentiation factor, Proc. Natl. Acad. Sci. USA 82:8153–8157.

    Article  PubMed  CAS  Google Scholar 

  28. Swain, S., Howard, M., Kappler, J., Marrack, P., Watson, J., Booth, R., and Dutton, R., 1983, Evidence for two distinct classes of murine B cell growth factors with activities indifferent functional assays, J. Exp. Med. 158:822–835.

    Article  PubMed  CAS  Google Scholar 

  29. Howard, M., Farrar, J., Hilfiker, M., Johnson, B., Takatsu, K., Hamaoka, K., and Paul, W. E., 1982. Identification of a T cell-derived B cell growth factor distinct from interleukin 2, J. Exp. Med. 155:914–923.

    Article  PubMed  CAS  Google Scholar 

  30. Lee, F., Yakota, T., Otsuka, T., Meyerson, P., Villaret D., Coffman, R. L., Mosmann, T., Rennick, D., Riehen, N., Smith, C., Zlotnik, A., and Arai, K., 1986, Isolation and characterization of a mouse interleukin cDNA clone that expresses B-cell stimulatory factor 1 activities and T-cell- and mast-cell-stimulating activities, Proc. Natl. Acad. Sci. USA 83:2061–2065.

    Article  PubMed  CAS  Google Scholar 

  31. Kinashi, T., Harada, N., Seversinson, E., Tanabe, T., Sideras, P., Konishi, M., Azuma, C., Tominaga, A., Bergstedt-Lindgvist, S., Takahashi, M., Matsuda, F., Yaoita, Y., Takatsu, K., and Honjo, T., 1986, Cloning of complementary DNA encoding T-cell replacing factor and identity with B-cell growth factor II, Nature 324:70–73.

    Article  PubMed  CAS  Google Scholar 

  32. Hirano, T., Yasukawa, K., Harada, H., Taga, T., Watanabe, Y., Matsuda, T., Kashiwamura, S., Nakajima, K., Koyama, K., Iwamatsu, A., Tsunasawa, S., Sakiyama, F., Matsui, H., Takahara, Y., Taniguchi, T., and Kishimoto T., 1987, Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin, Nature 324:73–76.

    Article  Google Scholar 

  33. Carbalho, E. M., and Horwitz, D. A., 1980, Characterization of a non-T, non-B human blood lymphocyte that mediates the enhancing effects of immune complexes on lymphocyte blastogenesis, J. Immunol. 124:1656–1661.

    Google Scholar 

  34. Lobo, P. I., 1981, Characterization of a non-T, non-B human lymphocyte (L cell) with use of monoclonal antibodies, J. Clin. Invest. 68:431–438.

    Article  PubMed  CAS  Google Scholar 

  35. Nabel, G., Bucalo, L. R., Allard, J., Wigzell, H., and Cantor, H., 1981, Multiple activities of a cloned cell line mediating natural killer cell function, J. Exp. Med. 153:1582–1591.

    Article  PubMed  CAS  Google Scholar 

  36. Nabel, G., Allard, W. J., and Cantor, H., 1982, A cloned cell line mediating natural killer cell function inhibits immunoglobulin secretion, J. Exp. Med. 156:658–663.

    Article  PubMed  CAS  Google Scholar 

  37. Tilden, A. B., Abo, T., and Balch, C. M., 1983, Suppressor cell function of human granular lymphocytes identified by the NHK-1 (Leu 7) monoclonal antibody, J. Immunol. 130:1171–1175.

    PubMed  CAS  Google Scholar 

  38. Clement, L. T., Gross, C. E., and Gartland, G. L., 1984, Morphologic and phenotypic features of the subpopulation of Leu-2+ cells that suppress B cell differention, J. Immunol. 133:2461–2468.

    PubMed  CAS  Google Scholar 

  39. Abo, W., Gray, J. D., Bakke, A. C., and Horwitz, D. A., 1987, Studies on human blood lymphocytes with iC3b (type 3) complement receptors. II. Characterization of subsets which regulate pokeweed mitogen-induced lymphocyte proliferation and immunoglobulin synthesis, Clin. Exp. Immunol. 67:544–555.

    PubMed  CAS  Google Scholar 

  40. Brieva, J. A., Targan, S., and Stevens, R. H., 1984, NK and T cell subsets regulate antibody production by human in vivo antigen-induced lymphoblastoid B cells, J. Immunol. 122:611–615.

    Google Scholar 

  41. Kuwano, K., Arai, S., Munakata, T., Tomita, Y., Yoshitake, T., and Kumagai, K., 1986, Suppressive effect of human natural killer cells on Epstein-Barr virus-induced immunoglobulin synthesis, J. Immunol. 137:1462–1467.

    PubMed  CAS  Google Scholar 

  42. Suzuki, S., Suzuki, R., Onta, T., and Kumagai, K., 1984. Suppression of B cell differentiation by NK cells in mice, in: Natural Killer Activity and Its Regulation (T. Hoshino, H. S. Koren, and A. Uchida, eds.), Excerpta Medica, Amsterdam, pp. 296–300.

    Google Scholar 

  43. Robles, C. P., Pereira, P., Wortley, P., and Pollack, S. B., 1985, Regulation of the B cell response by NK cells, in: Mechanisms of Cytotoxicity by NK Cells (R. B. Herberman and D. M. Callewaert, eds.), Academic Press, New York, pp. 499–506.

    Google Scholar 

  44. Suzuki, S., Suzuki, R., Onta, T., and Kumagai, K., 1986. Suppression of B-cell differentiation by natural killer (asialo GM1 +) cell in mice, Nat. Immun. Cell Growth Regul. 5:75–89.

    PubMed  CAS  Google Scholar 

  45. Robles, C. P., and Pollack, S. B., 1986, Antibody responses and regulation, Nat. Immun. Cell Growth Regul. 5:64–74.

    PubMed  CAS  Google Scholar 

  46. Banerjee, D., and Thibert, R. F., 1983, Natural killer-like cells found in B-cell compartments on human lymphoid tissues, Nature 304:270–272.

    Article  Google Scholar 

  47. Poppema, S., Visser, L., and De Leij, L., 1983, Reactivity of presumed anti-natural killer cell antibody Leu 7 with intrafollicular T lymphocytes, Clin. Exp. Immunol. 54:834–837.

    PubMed  CAS  Google Scholar 

  48. Mori, S., Mohri, N., Morita, H., Yamaguchi, K., and Shimamine, T., 1983, The distribution of cells expressing a natural killer cell marker (HNK-1) in normal human lymphoid organs and malignant lymphoma, Virchows Arch. (Cell. Pathol.) 43:253–263.

    Article  CAS  Google Scholar 

  49. Ritchie, A. W. A., James, K., and Micklem, H. S., 1983, The distribution in human lymphoid tissue and possible significance of cells identified by the monoclonal antibody HNK-1, Clin. Exp. Immunol. 51:439–447.

    PubMed  CAS  Google Scholar 

  50. Si, L., and Witeside, T. L., 1983, Tissue distribution of human NK cells with anti-Leu-7 monoclonal antibody, J. Immunol. 130:2149–2155.

    PubMed  CAS  Google Scholar 

  51. Tanaka, H., Takasaki, S., Muroya, T., Suzuki, T., and Ishikawa, E., 1984, The distribution and possible significance of natural killer cells (HNK-1+ cells) in the human spleen, Acta Histochem. Cytochem. 17:339–358.

    Article  Google Scholar 

  52. Pizzolo, G., Smenzato, G., Chilosi, M., Morittu, L., Ambrosetti, A., Warner, N., Bofill, M., and Hanossy, G., 1984, Distribution and heterogeneity of cells detected by HNK-1 monoclonal antibody in blood and tissues in normal, reactive and neoplastic conditions, Clin. Exp. Immunol. 57:195–206.

    PubMed  CAS  Google Scholar 

  53. Brieva, J. A., and Stevens, R. H., 1984, Involvement of the transferrin receptor in the production and NK-induced suppression of human antibody synthesis, J. Immunol. 133:1288–1292.

    PubMed  CAS  Google Scholar 

  54. Storkus, W. J., and Dawson, J. R., 1986, B cell sensitivity to natural killing: Correlation with target cell stage of differentiation and state of activation, J. Immunol. 136:1542–1547.

    PubMed  CAS  Google Scholar 

  55. Massucci, M. G., Bejarano, M. T., Massucci, G., and Klein, E., 1983, Large granular lymphocytes inhibit the in vitro growth of autologous Epstein-Barr-virus infected B cells, Cell. Immunol. 76:311–321.

    Article  Google Scholar 

  56. Kaplan, J., and Shope, T. C., 1985, Natural killer cells inhibit outgrowth of autologous Epstein-Barr virus-infected B cells, Nat. Immun. Cell Growth Regul. 4:40–47.

    PubMed  CAS  Google Scholar 

  57. Targan, S., Brieva, J., Newman, W., and Stevens, R., 1985, Is the NK lytic process involved in the mechanism of NK suppression of antibody-producing cells? J. Immunol. 134:666–669.

    PubMed  CAS  Google Scholar 

  58. Shah, P. D., Gilbertson, S. M., and Rowley, D. A., 1985, Dendritic cells that have interacted with antigen are targets for natural killer cells, J. Exp. Med. 162:625–636.

    Article  PubMed  CAS  Google Scholar 

  59. Shah, P. D., Keÿ, J., Gilbertson, S. M., and Rowley, D. A., 1986, Thy-1+ and Thy-1- natural killer cells. Only Thy-1- natural killer cells suppress dendritic cells, J. Exp. Med. 163:1012–1017.

    Article  PubMed  CAS  Google Scholar 

  60. Burns, G. F., Begley, C. G., Mackay, I. R., Triglia, T., and Werkmeister, J. A., 1985, Supernatural killer cells, Immunol. Today 6:370–373.

    Article  Google Scholar 

  61. Grossman, Z., and Herbermen, R. B., 1986, Natural killer cells and their relationship to T-cells: Hypothesis on the role of T-cell receptor gene rearrangement on the course of adaptive differentiation, Cancer Res. 46:2651–2658.

    PubMed  CAS  Google Scholar 

  62. Lanier, L. L., Phillips, J. H., Hackett, J., Tutt, M., and Kumar, V., 1986, Opinion—Natural killer cells: Definition of a cell type rather than a function, J. Immunol. 137:2735–2739.

    PubMed  CAS  Google Scholar 

  63. Ortaldo, J. R., and Reynolds, C. W., 1987, Natural killer activity: Definition of a function rather than a cell type, J. Immunol. 138:4545–4546.

    PubMed  CAS  Google Scholar 

  64. Suzuki, R., Handa, K., Itoh, K., and Kumagai, K., 1983, Natural killer cells as a responder to interleukin 2 (IL2). I. Proliferative response and establishment of cloned cells, J. Immunol. 130:981–987.

    PubMed  CAS  Google Scholar 

  65. Handa, K., Suzuki, R., Matsui, H., Shimizu, Y., and Kumagai, K., 1983, Natural killer (NK) cells as a responder to interleukin 2 (IL-2). II. IL-2 induced interferon γ production, J Immunol. 130:988–992.

    PubMed  CAS  Google Scholar 

  66. Kumagai, K., Suzuki, R., Suzuki, S., and Arai, S., 1985, Immunoregulatory effects of NK cells, In: Mechanisms of Cytotoxicity (R. B. Herberman and D. M. Callewaert, eds.), Academic Press, Orlando, FL, pp. 489–498.

    Google Scholar 

  67. Itoh, K., Shiiba, K., Shimizu, Y., Suzuki, R., and Kumagai, K., 1985, Generation of activated killer cells by recombinant interleukin 2 (rIL2) in collaboration with interferon γ (IFN γ), J. Immunol. 134:3124–3129.

    PubMed  CAS  Google Scholar 

  68. Kumagai, K., Suzuki, R., Itoh, K., Shiiba, K., Ebina, N., and Igarashi, M., 1986, Interleukin-2-induced differentiation of natural killer cells to activated killer cells, in: Natural Immunity, Cancer and Biological Response Modification (E. Lotzova and R. B. Herberman, eds.), Karger, Basel, pp. 131–142.

    Google Scholar 

  69. Abo, T., Sugawara, S., Amenomori, A., Itoh, H., Rikiishi, H., Moro, I., and Kumagai, K., 1986, Selective phagocytosis of gram-positive bacteria and interleukin 1-like factor production by a subpopulation of large granular lymphocytes, J. Immunol. 136:3189–3197.

    PubMed  CAS  Google Scholar 

  70. Scala, G., Allavena, P., Djeu, J. Y., Kasahara, T., Orgaldo, J. R., Herberman, R. B., and Oppenheim, J. J., 1984, Human large granular lymphocytes (LGL) are potent producers of interleukin 1, Nature 309:56–59.

    Article  PubMed  CAS  Google Scholar 

  71. Kasahara, T., Djeu, Y. Y., Dongherty, S. F., and Oppenheim, J. J., 1983, Capacity of human large granular lymphocytes (LGL) to produce multiple lymphokines: Interleukin 2, interferon, and colony stimulating factor, J. Immunol. 131:2379–2385.

    PubMed  CAS  Google Scholar 

  72. Pistoia, V., Cozzolino, F., Torcia, M., Castigli, E., and Ferrarini, M., 1985, Production of B cell growth factor by a Leu-7+, OKM1+ non-T cell with the features of large granular lymphocytes (LGL), J. Immunol. 134:3179–3184.

    PubMed  CAS  Google Scholar 

  73. Procopio, A. D. G., Allavena, P., and Ortaldo, J. R., 1985, Noncytotoxic functions of natural killer (NK) cells: Large granular lymphocytes (LGL) produce a B cell growth factor (BCGF), J. Immunol. 135:3264–3271.

    PubMed  CAS  Google Scholar 

  74. Itoh, K., Tilden, A. B., Kumagai, K., and Balch, C. M., 1985, Leull+ lymphocytes with natural killer (NK) activity are precursors of recombinant interleukin 2 (rIL2)-induced activated killer (AK) cells, J. Immunol. 134:802–807.

    PubMed  CAS  Google Scholar 

  75. Shiiba, K., Suzuki, R., Kawakami, K., Ohuchi, A., and Kumagai, K., 1986, Interleukin 2-activated killer cells: Generation in collaboration with interferon γ and its suppression in cancer patients, Cancer Immunol. Immunother. 21:119–128.

    Article  PubMed  CAS  Google Scholar 

  76. Palacios, R., Henson, G., Steinmetz, M., and McKearn, J. P., 1984, Interleukin-3 supports growth of mouse pre-B-cell clones in vivo, Nature 309:126–131.

    Article  PubMed  CAS  Google Scholar 

  77. Finkelman, F. D., Katona, I. M., Urban, J. F. Jr., Snapper, C. M., Ohara, J., and Paul, W. E., 1986, Suppression of in vivopolyclonal IgE responses by monoclonal antibody to the lymphokine B cell-stimulatory factor 1, Proc. Natl. Acad. Sci. USA 83:9675–9678.

    Article  PubMed  CAS  Google Scholar 

  78. Killar, L., MacDonald, G., West, J., Woods, A., and Bottomly, K., 1987, Cloned, Ia-restricted T cells that do not produce interleukin 4 (IL-4)/B cell stimulatory factor 1 (BSF-1) fail to help antigen-specific B cells, J. Immunol. 138:1674–1679.

    PubMed  CAS  Google Scholar 

  79. Leibson, H. J., Gofter, M., Zlotnik, A., Marrack, P., and Kappler, J. W., 1984, Role of \(\gamma\)-interferon in antibody-producing responses, Nature 309:799–801.

    Article  PubMed  CAS  Google Scholar 

  80. Sidman, C. L., Marxhall, J. D., Schultz, L. D., Gray, P. W., and Johnson, M. M., 1984, ?-Interferon is one of several direct B cell-maturating lymphokines, Nature 309:801–804.

    Article  PubMed  CAS  Google Scholar 

  81. Aune, T. M., and Pierce, C. W., 1982, Activation of a suppressor T-cell pathway by interferon, Proc Natl Acad. Sci. USA 79:3808–3812.

    Article  PubMed  CAS  Google Scholar 

  82. Karsh, J., Dorval, G., and Osterland, C. K., 1981, Natural cytotoxicity in rheumatoid arthritis and systemic lupus erythematosus, Clin. Immunol. Immunopathol. 19:437–446.

    Article  PubMed  CAS  Google Scholar 

  83. Itoh, K., Saitoh, F., Kumagai, K., and Kosaka, S., 1981, Depressed natural killer activity ’ in rheumatoid arthritis and its in vitro augmentation with interferon and N-(2-carboxy-phenyl)-4-chloroanthranilic acid sodium salt (CCA), an anti-arthritis agent, Ryumachi 21:69–74.

    PubMed  Google Scholar 

  84. Goto, M., Tanimoto, K., and Horiuchi, Y., 1980, Natural cell-mediated cytotoxicity in systemic lupus erythematosus, Arthritis Rheum 23:1274–1281.

    Article  PubMed  CAS  Google Scholar 

  85. Sibbitt, W. L., Mathews, P. M., and Bankhurst, A. D., 1983, Natural killer cells in systemic lupus erythematosus. Defects in effector lytic activity and response to interferon and interferon inducers, J. Clin. Invest. 71:1230–1239.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Kumagai, K., Suzuki, S., Suzuki, R. (1989). Role of the Natural Immune System in the Antibody Response. In: Reynolds, C.W., Wiltrout, R.H. (eds) Functions of the Natural Immune System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0715-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0715-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8046-0

  • Online ISBN: 978-1-4613-0715-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics