Skip to main content

Natural Host Defense Systems Active against Herpes Simplex Virus Infections

  • Chapter
Functions of the Natural Immune System

Abstract

The strategies vary by which viruses invade a host and cause disease.(1) In return, the host defense systems that are called upon to intercept and sequester those pathogenic agents also differ.(2) The natural defense system of the infected animal constitutes the first barrier of active defense. These mechanisms act relatively nonspecifically and require no prior exposure to the invading microorganism in order to be active. Macrophages, interferon, and natural killer (NK) cells are three natural defense systems that are thought to be important in the control of herpes simplex virus (HSV) infections and will be the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Notkins, A. L., 1974, Commentary: Immune mechanisms by which the spread of viral infection is stopped, Cell Immunol. 11:478–83.

    PubMed  CAS  Google Scholar 

  2. Allison, A. C., 1974, Interactions of antibodies, complement components and various cell types in immunity against virus and pyogenic bacteria, Transplant. Rev. 19:3– 55.

    PubMed  CAS  Google Scholar 

  3. Nahmias, A. J. and Roizman, B., 1973, Infection with herpes-simplex viruses 1 and 2, N. Engl. J. Med. 299:667–674, 719–725, 781– 789.

    Google Scholar 

  4. Roizman, B., 1974, Herpesviruses, latency and cancer, J. Reticuloendothel. Soc. 15:312– 321.

    PubMed  CAS  Google Scholar 

  5. Corey, L., 1982, The natural history of genital herpes simplex virus. Perspectives on an increasing problem, in: The Herpesviruses (B. Roizman, C. Lopez, eds.), Plenum Press, New York, pp. 1–35.

    Google Scholar 

  6. Dowdle, W. R., Nahmias, A. J., Harwell, R. W., and Pauls, F. P., 1967, Association of antigenic type of herpesvirus hominis with site of viral recovery, J. Immunol. 99:974– 980.

    PubMed  CAS  Google Scholar 

  7. Stevens, J. G., 1975, Latent herpes simplex virus and the nervous system, Curr. Top. Micro. Immunol. 70:31– 50.

    CAS  Google Scholar 

  8. Hill, T. J., Field, H. J., and Blyth, W. A., 1975, Acute and recurrent infection with herpes simplex virus in the mouse: A model for studying latency and recurrent disease, J. Gen. Virol. 28:341– 353.

    PubMed  CAS  Google Scholar 

  9. Rouse, B. T., 1984, Cell-mediated immune mechanisms, in: Immunobiology of Herpes Simplex Virus Infection (B. T. Rouse, C. Lopez eds.), CRC Press, Boca Raton, FL, pp. 107–120.

    Google Scholar 

  10. Abghari, S. Z., Stulting, R. D., Nigida, S. M., Downer, D. N., Kindle, J. C., and Nahmias, A. J., 1986, Spread of HSV and establishment of latency after corneal infection in inbred mice, J. Invest. Ophthalmol. 27:77– 82.

    CAS  Google Scholar 

  11. Bang, F. B., 1978, Genetics of resistance of animals to viruses: Introduction and studies in mice, Adv. Virus Res. 23:269– 347.

    PubMed  CAS  Google Scholar 

  12. Lopez, C., 1975, Genetics of natural resistance to herpesvirus infections in mice, Nature 258:152–153.

    PubMed  CAS  Google Scholar 

  13. Kirchner, H., Kochen, M., Hirt, H. M., and Munk, K., 1978, Immunological studies of HSV infection of resistant and susceptible inbred strains of mice, Z. Immun. Forsch. 154:147– 154.

    Google Scholar 

  14. Kirchner, H., Hirt, H. M., Rosenstreich, D. L., and Mergenhagen, S. E., 1978, Resistance of C3H/HeJ mice to lethal challenge with herpes simplex virus, Proc. Soc. Exp. Biol. Med. 157:29– 32.

    PubMed  CAS  Google Scholar 

  15. Zawatzky, R., Hilfenhaus, J., Marucci, F., and Kirchner, H., 1981, Experimental infection of inbred mice with herpes simplex virus type 1. I. Investigation of humoral and cellular immunology and of interferon induction, J. Gen. Virol. 43:31– 38.

    Google Scholar 

  16. Caspary, L., Schindling, B., Dundarov, S., and Falke, D., 1980, Infections of susceptible and resistant mouse strains with herpes simplex virus type 1 and 2, Arch. Virol. 65:219– 227.

    PubMed  CAS  Google Scholar 

  17. Shellam, G. R., and Flexman, J. P., 1986, Genetically determined resistance to murine cytomegalovirus and herpes simplex virus in newborn mice, J. Virol. 58:152– 156.

    PubMed  CAS  Google Scholar 

  18. Lopez, C., 1980, Resistance to HSV-1 in the mouse is governed by two major, independently segregating non-H-2 loci, Immunogenics 11:87–92.

    CAS  Google Scholar 

  19. Mogensen, S. C., 1979, Role of macrophages in natural resistance to virus infections, Microbiol Rev. 43:1–26.

    PubMed  CAS  Google Scholar 

  20. Lopez, C, 1978, Immunological nature of genetic resistance of mice to herpes simplex virus type 1 infection, in: Oncogenesis and Herpesviruses III (G. de The, W. Henle, F. Rapp, eds.), IARC, Lyon, France, pp. 775–778.

    Google Scholar 

  21. Rajcani, J., Gajdosova, E., and Mayer, V., 1974, Pathogenesis of herpesvirus hominis infection in immunosuppressed mice, Acta Virol. 18:135–142.

    Google Scholar 

  22. Rager-Zisman, B., and Allison, A. C., 1976, Mechanisms of immunologic resistance to herpes simplex virus 1 (HSV-1) infection, J. Immunol. 116:35– 40.

    PubMed  CAS  Google Scholar 

  23. Hough, V., and Robinson, T. W. E., 1975, Exacerbation and reactivation of herpesvirus hominis infection in mice by cyclophosphamide, Arch. Virol. 48:75– 83.

    PubMed  CAS  Google Scholar 

  24. Armerding, D., Scriba, M., Hren, A., and Rossiter, H., 1982, Modulation by cyclosporin A of murine natural resistance against herpes simplex virus infection. I. Interference with the susceptibility to herpes simplex virus infection, Antivir. Res. 2:3– 11.

    PubMed  CAS  Google Scholar 

  25. Armerding, D., and Rossiter, H., 1981, Induction of natural killer cells by herpes simplex virus type 2 in resistant and sensitive inbred mouse strains, Immunobiology 158:369–379.

    PubMed  CAS  Google Scholar 

  26. Schneweis, K. E., and Saftig, V., 1981, The vaginal herpes simplex virus infection of resistant (C57B1) mice, Int. Herpesvirus Workshop, p. 144.

    Google Scholar 

  27. Lopez, C., 1981, Resistance to herpes simplex virus-type 1 (HSV-1), in: Natural Resistance to Tumors and Viruses (O. Haller, ed), Springer-Verlag, New York, pp. 15–24.

    Google Scholar 

  28. Price, R. W., and Schmitz, J., 1978, Reactivation of latent herpes simplex virus infection of the autonomic nervous system by post-ganglionic neurectomy, Infect. Immun. 19:523– 532.

    PubMed  CAS  Google Scholar 

  29. Cudkowicz, G., 1975, Genetic control of resistance to allogeneic and zenogeneic bone marrow grafts in mice, Transplant Proc. 7:155–159.

    PubMed  CAS  Google Scholar 

  30. Cudkowicz, G., and Bennett, M., 1971, Peculiar immunobiology of bone marrow allografts. I. Graft rejection by irradiated responder mice, J. Exp. Med. 134:83– 102.

    PubMed  CAS  Google Scholar 

  31. Bennett, M., 1973, Prevention of marrow allograft rejection with radioactive strontium: Evidence for marrow-dependent effector cells, J. Immunol. 110:510– 516.

    PubMed  CAS  Google Scholar 

  32. Bennett, M., Baker, E. E., Eascott, J. W., Kumar, V., and Yonkosky, D., 1976, Selective elimination of marrow precursors with the bone-seeking isotope 89Sr: Implications for hemopoesis, lymphopoesis, viral leukemogenesis and infection, J. Reticuloendothel. Soc. 20:71– 87.

    PubMed  CAS  Google Scholar 

  33. Lopez, C., Ryshke, R., Bennett, M., 1980, Marrow-dependent cells depleted by 89Sr mediate genetic resistance to herpes simplex virus type 1 infections in mice, Infect. Immun. 28:1028– 1032.

    PubMed  CAS  Google Scholar 

  34. Zawatzky, R., Hilfenhaus, J., and Kirchner, H., 1979, Resistance of nude mice to herpes simplex virus and correlation with in vitroproduction of interferon, Cell. Immunol. 47:424– 428.

    PubMed  CAS  Google Scholar 

  35. Mori, R., Takeya, K., Minamishima, Y., and Tasiki, T., 1965, Effect of thymectomy on experimental viral infections of mice. I. Herpes simplex virus and Coksaki B5 virus, Proc.Jpn. Acad. 41:975– 982.

    Google Scholar 

  36. Chmielarczyk, W., Engler, H., Ernst, R., Optiz, U., and Kirchner, H., 1985, Injection of anti-thy-1.2 serum breaks genetic resistance of mice against herpes simplex virus, J. Gen. Virol. 66:1087– 1094.

    PubMed  Google Scholar 

  37. Schlabach, A. J., Martinez, D., Field, A. K., and Tytell, A. A., 1979, Resistance of C57 mice to primary systemic herpes simplex virus infection: Macrophage dependence and T-cell independence, Infect. Immun. 26:615– 620.

    PubMed  CAS  Google Scholar 

  38. Kastrukoff, L. F., Lau, A. S., and Puterman, M. L., 1986, Genetics of natural resistance to herpes simplex virus type 1 latent infection of the peripheral nervous system in mice, J. Gen. Virol. 67:613– 621.

    PubMed  CAS  Google Scholar 

  39. Abghari, S. Z., Stulting, R. D., Nigida, S. M., Downer, D. N., Kindle, J. C., and Nahmias, A. J., 0000, Spread of HSV and establishment of latency after corneal infection in inbred mice, Invest. Ophthalmol. 27:77–82.

    Google Scholar 

  40. Harnett, G. B., and Schellam, G. R., 1982, Variation in murine cytomegalovirus replication in fibroblasts from different mouse strains in vitro: Correlation with in vivoresistance, J. Gen. Virol. 62:39– 47.

    PubMed  Google Scholar 

  41. Collier, L. H., Scott, Q. J., and Pani, A., 1983, Variation in resistance of cells from inbred strains of mice to herpes simplex virus type 1, J. Gen. Virol. 64:1483– 1490.

    PubMed  Google Scholar 

  42. Abghari, S. Z., Stulting, R. D., Nigida, S. M., Downer, D. N., Kindle, J. C., and Nahmias, A. J., 1986, Replication of herpes simplex virus in fibroblast cells from inbred mice, J. Invest. Ophthalmol. 27:57– 82.

    Google Scholar 

  43. Mogensen, S. C., 1976, Biological conditions influencing the focal necrotic hepatitis test for differentiation between herpes simplex virus type 1 and 2, Acta Pathol. Microbiol. Scand. (B) 84:154– 158.

    CAS  Google Scholar 

  44. Mogensen, S. C., Teisner, B., and Andersen, H. K., 1974, Focal necrotic hepatitis in mice as a biological marker for differentiation of herpesvirus hominis type 1 and 2, J. Gen. Virol. 25:151– 155.

    PubMed  CAS  Google Scholar 

  45. Hirsch, J. G., and Fedorko, M. E., 1970, Morphology of mouse mononuclear phagocytes, in: Mononuclear Phagocytes( R. von Furth, ed.), Blackwell, Oxford, U.K., p. 7.

    Google Scholar 

  46. Andervout, H. B., 1927, Activity of herpetic viruses in mice, Am. J. Hyg. 14:383– 393.

    Google Scholar 

  47. Johnson, R. T., 1964, The pathogenesis of herpesvirus encephalitis. I. Virus pathways to the nervous system of suckling mice demonstrated by fluorescent antibody staining, J. Exp. Med. 119:343– 358.

    PubMed  CAS  Google Scholar 

  48. Johnson, R. T., 1964, The pathogenesis of herpesvirus encephalitis. II. A cellular basis for the development of resistance with age, J. Exp. Med. 120:359– 373.

    PubMed  CAS  Google Scholar 

  49. Hirsch, M. S., Zisman, B., and Allison, A. C., 1970, Macrophages and age-dependent resistance to herpes simplex virus in mice, J. Immunol. 104:1160– 1165.

    PubMed  CAS  Google Scholar 

  50. . Halpern, B., Frey, A., Crepin, O., Platica, O., Lorinet, A. M., Rabourdin, A., Sparros, L., and Isac, R., 1973, Corynebacterium parvum, a potent immunostimulant in experimental infections and in malignancies, in: Immunopotentiation, Vol. 18, Ciba Foundation Symposium, Associated Scientific Publishers, New York p. 217.

    Google Scholar 

  51. Lopez, C., and Dudas, G., 1979, Replication of herpes simplex virus type 1 in macrophages from resistant and susceptible mice, Infect. Immun. 23:432– 437.

    PubMed  CAS  Google Scholar 

  52. Armerding, D., Mayer, P., Scriba, M., Hren, A., and Rossiter, H., 1981, In vivo modulation of macrophage functions by herpes simplex virus type 2 in resistant and sensitive inbred mouse strains, Immunobiology 160:217–227.

    PubMed  CAS  Google Scholar 

  53. Brucher, J., Domke, I., Schroder, C. H., and Kirchner, H., 1984, Experimental infection of inbred mice with herpes simplex virus. VI. Effect of interferon on in vitrovirus replication in macrophages, Arch. Virol. 82:83– 93.

    PubMed  CAS  Google Scholar 

  54. Mogensen, S., 1977, Role of macrophages in hepatitis induced by herpes simplex virus types 1 and 2, Infect. Immun. 15:686– 691.

    PubMed  CAS  Google Scholar 

  55. Mogensen, S. C., 1978, Macrophages and age-dependent resistance to hepatitis induced by herpes simplex virus type 2 in mice, Infect. Immun. 19:46– 59.

    PubMed  CAS  Google Scholar 

  56. Kiessling, R., Hochman, P. S., Haller, O., Shearer, G. M., Wigzell, H., and Cutkowicz, G., 1977, Evidence for a similar or common mechanism for natural killer cell activity and resistance to hemopoietic grafts, Eur. J. Immunol. 7:663– 669.

    Google Scholar 

  57. Haller, O., Kiessling, R., Orn, A., and Wigzell, H., 1977, Generation of natural killer cells: An autonomous function of the bone marrow, J. Exp. Med. 145:1411– 1416.

    PubMed  CAS  Google Scholar 

  58. Morahan, P. S., Coleman, P. H., Morse, S. S., and Volkman, A., 1983, Resistance to infections in mice with defects in the activities of mononuclear phagocytes and natural killer cells: Effects of immunomodulaters in beige mice and 89Sr-treated mice, Infect. Immun. 37:1079– 1085.

    Google Scholar 

  59. Habu, S., Akamatsu, K., Tamaoki, N., and Okumura, K., 1984, In vivo significance of NK cell on resistance against virus (HSV-1) infections in mice, J. Immunol. 133:2743–2747.

    PubMed  CAS  Google Scholar 

  60. Bukowski, J. F., and Welsh, R. M., 1986, The role of natural killer cells and interferon in resistance to acute infection of mice with herpes simplex virus type 1, J. Immunol. 136:3481– 3485.

    PubMed  CAS  Google Scholar 

  61. Rager-Zisman, B., Quan, P.-C., Rosner, M., Moller, J. R., and Bloom, B. R., 1987, Role of NK cells in protection of mice against herpes simplex virus-1 infection, J. Immunol. 138:884– 888.

    PubMed  CAS  Google Scholar 

  62. Isaacs, A., and Lindenmann, J., 1957, Virus interference. I. The interferons, Proc. R. Soc. 147:258– 267.

    CAS  Google Scholar 

  63. Gresser, I., 1977, Commentary: On the varied biologic effects of interferon, Cell. Immunol. 34:406– 415.

    PubMed  CAS  Google Scholar 

  64. Stewart, W. E., 1979, The Interferon System, Springer, Vienna.

    Google Scholar 

  65. Gidlund, M., Anders, O., Wigzell, H., Senik, A., and Gresser, I., 1979, Enhanced NK cell activity in mice injected with interferon and interferon inducers, Nature 273:759–761.

    Google Scholar 

  66. Huang, K. Y., Donahoe, R. M., Gordon, F. B., and Dressier, H. R., 1971, Enhancement of phagocytosis by interferon-containing preparation, Infect. Immun. 4:581– 588.

    PubMed  CAS  Google Scholar 

  67. Gresser, I., Tovey, M. G., Maury, C., and Bandu, M.-T., 1976, Role of interferon in the pathogenesis of virus diseases in mice as demonstrated by the use of anti-interferon serum. II. Studies with herpes simplex virus, Maloney’s sarcoma, vesicular stomatitis, Newcastle disease and influenza viruses, J. Exp. Med. 144:1316– 1323.

    PubMed  CAS  Google Scholar 

  68. Wrzos, H., Murasko, D. M., and Rapp, F., 1986, Effect of antibody to interferon on genital herpesvirus infection in mice, Micro. Pathol. 1:71– 78.

    CAS  Google Scholar 

  69. Zawatzky, R., Hilfenhaus, J., and Kirchner, H., 1979, Resistance of nude mice to herpes simplex virus and correlation with in vitroproduction of interferon, Cell. Immunol. 47:424– 428.

    PubMed  CAS  Google Scholar 

  70. Zawatzky, R., Hilfenhaus, J., Marcucci, F., and Kirchner, H., 1981, Experimental in fection of inbred mice with herpes simplex virus type 1. I. Investigation of humoral and cellular immunity and of interferon induction, J. Gen. Virol. 53:31– 38.

    PubMed  CAS  Google Scholar 

  71. Engler, H., Zawatzky, R., Goldbach, A., Schroder, C. H., Weyand, C., Hammerling, G. J., and Kirchner, H., 1981, Experimental infection of inbred mice with herpes simplex virus. II. Interferon production and activation of natural killer cells in peritoneal exudate, J. Gen. Virol. 55:25– 30.

    PubMed  CAS  Google Scholar 

  72. Engler, H., Zawatzky, R., Kirchner, H., and Armerding, D., 1982, Experimental infection of inbred mice with herpes simplex virus. IV. Comparison of interferon production and natural killer cell activity in susceptible and resistant adult mice, Arch. Virol. 74:239– 247.

    PubMed  CAS  Google Scholar 

  73. Zawatzky, R., Gresser, I., DeMaeyer, E., and Kirchner, H., 1982, The role of interferon in resistance of C57BL/6 mice to various doses of herpes simplex virus type 1, J. Infect. Dis. 146:405– 410.

    PubMed  CAS  Google Scholar 

  74. Zawatzky, R., Kirchner, H., DeMaeyer-Guignard, Q., and DeMaeyer, E., 1982, X-linked locus influences the amount of circulating interferon induced in the mouse by herpes simplex virus type 1, Virology 63:325–332.

    CAS  Google Scholar 

  75. Kirchner, H., Engler, H., Schroder, C. H., Zawatzky, R., and Storch, E., 1983, Herpes simplex virus type 1-induced interferon production and activation of natural killer cells in mice, J. Gen. Virol. 64:437– 441.

    PubMed  CAS  Google Scholar 

  76. Chmielarczyk, W., Engler, H., Brucher, J., and Kirchner, H., 1983, Herpes simplex virus-induced interferon production and activation of natural killer cells in SM/J mice, relation to antiviral resistance, Antiviral Res. 3:325–333.

    PubMed  CAS  Google Scholar 

  77. Chmielarczyk, W., Domke, I., and Kirchner, H., 1985, Role of interferon in the resistance of C3H/HeJ mice to infection with herpes simplex virus, Antiviral Res. 5:55–59.

    PubMed  CAS  Google Scholar 

  78. Pederson, E. B., Haahr, S., and Mogensen, 1983, X-linked resistance of mice to high doses of herpes simplex virus type 2 correlates with early interferon production, Infect. Immun. 42:740– 746.

    Google Scholar 

  79. Daniels, C. A., Kleinerman, E. S., and Snyderman, R., 1978, Abortive and productive infections of human mononuclear phagocytes by type 1 herpes simplex virus, Am. J. Pathol. 91:119– 136.

    PubMed  CAS  Google Scholar 

  80. Trofatter, K. F. Jr., Daniels, C. A., Williams, R.J. Jr., and Gall, S. A., 1979, Growth of type-2 herpes simplex virus in newborn and adult mononuclear leukocytes, Intervirology 11:117–123.

    PubMed  Google Scholar 

  81. Linnavuori, K., and Hovi, T., 1981, Herpes simplex virus infection in human monocyte cultures: Dose-dependent inhibition of monocyte differentiation resulting in abortive infection, J. Gen. Virol. 52:381– 385.

    PubMed  CAS  Google Scholar 

  82. Grogan, E., Miller, G., Moore, T., Robinson, J., and Wright, J., 1981, Resistance of neonatal human lymphoid cells to interferon by herpes simplex virus overcome by aging cells in culture, J. Infect. Dis. 144:547– 556.

    PubMed  CAS  Google Scholar 

  83. Diamond, R. D., Keller, R., Lee, G., and Finkel, D., 1977, Lysis of cytomegalovirus- infected human fibroblasts and transformed human cells by peripheral blood lymphoid cells from normal human donors, Proc. Soc. Exp. Biol. Med. 154:259– 263.

    PubMed  CAS  Google Scholar 

  84. Santoli, D., Trinchieri, G., and Lief, F. S., 1978, Cell-mediated cytotoxicity against virus-infected target cells in humans. I. Characterization of the effector lymphocyte, J. Immunol. 121:526– 531.

    PubMed  CAS  Google Scholar 

  85. Ching, C., and Lopez, C., 1979, Natural killing of herpes simplex virus type-1 infected target cells: Normal human responses and influence of anti-viral antibody, Infect. Immun. 26:49– 56.

    PubMed  CAS  Google Scholar 

  86. Timonen, T., and Saksela, E., 1980, Isolation of human NK cells by density gradient centrifugation, J. Immunol. Methods 36:285– 291.

    PubMed  CAS  Google Scholar 

  87. Timonen, T., Ortaldo, R. R., and Herberman, R. B., 1981, Characteristics of human granular lymphocytes and relationship to natural killer cells, Fed. Proc. 40:2705– 2710.

    Google Scholar 

  88. Fitzgerald, P. A., Evans, R., Kirkpatrick, D., and Lopez, C., 1983, Heterogeneity of human NK cells: Comparison of effectors that lyse HSV-1-infected fibroblasts and K562 erythroleukemia targets, J. Immunol. 130:1663– 1668.

    PubMed  CAS  Google Scholar 

  89. Lopez, C., Kirkpatrick, D., Sorell, M., O’Reilly, R. J., and Ching, C., 1979, Association between pretransplant natural kill and graft versus host disease following stem cell transplantation, Lancet 2:1103–1106.

    PubMed  CAS  Google Scholar 

  90. Sorell, M., Kapoor, N., Kirkpatrick, D., Rosen, J. F., Chaganti, R. S., Lopez, C., Dupont, B., Pollack, M., Terrin, B. N., Harris, M. B., Vine, D., Rose, J. S., Goosen, C., Lane, J., Good, R. A., and O’Reilly, R. J., 1981, Marrow transplantation for juvenile osteopetosis, Am. J. Med. 70:1280– 1287.

    PubMed  CAS  Google Scholar 

  91. Kumar, V., Ben-Ezra, J., Bennett, M., and Sonnenfeld, G., 1979, Natural killer cells in mice treated with 89Sr: Normal target-binding cell numbers but inability to kill even after interferon administration, J. Immunol. 123:1832– 1838.

    PubMed  CAS  Google Scholar 

  92. Lust, J. A., Kumar, V., Burton, R. C., Barlett, S. P., and Bennett, M., 1981, Heterogeneity of natural killer cells in the mouse, J. Exp. Med. 154:306– 317.

    PubMed  CAS  Google Scholar 

  93. Ault, K. A., and Springer, T. A., 1981, Cross-reaction of a rat-anti-mouse phagocyte-specific monoclonal antibody (anti-Mac-1) with human monocytes and natural killer cells, J. Immunol. 126:359– 364.

    PubMed  CAS  Google Scholar 

  94. Stutman, O., Paige, C. J., and Figarella, E., 1978, Natural cytotoxic cells against solid tumors in mice. I. Strain and age distribution and target cell susceptibility, J. Immunol. 121:1819– 1826.

    PubMed  CAS  Google Scholar 

  95. Stutman, O., Lattime, E. C., and Figarella, E. F., 1981, Natural cytotoxic cells against solid tumors in mice: A comparison with natural killer cells, Fed. Proc. 40:2699– 2703.

    PubMed  CAS  Google Scholar 

  96. Messina, C., Kirkpatrick, D., Fitzgerald, P. A., O’Reilly, R. J., Siegal, F. P., Cunningham-Rundles, C., Blaese, M., Oleske, J., Pahwa, S., and Lopez, C., 1986, Natural killer cell function and interferon generation in patients with primary immunodeficiencies, Clin. Immunol. Immunopathol. 39:394– 404.

    PubMed  CAS  Google Scholar 

  97. Feldman, M., Curl, S., and Fitzgerald-Bocarsly, P., 1987, The accessory cell function of HLA-DR positive cells in NK-mediated lysis of HSV-1-infected fibroblasts, Fed. Proc. 46:483.

    Google Scholar 

  98. Bandyopadhyay, S., Perussia, B., Trinchieri, G., Miller, D. S., and Starr, S. T., 1986, Requirement for HLA-DR+ accessory cells in natural killing of cytomegalovirus-infected fibroblasts, J. Exp. Med. 164:180– 195.

    PubMed  CAS  Google Scholar 

  99. Fitzgerald-Bocarsly, P., Feldman, M., Curl, S., Tehrani, S., and Denny, T., 1987, Co¬operation between CD-16-positive NK cells and DR-positive accessory cells in the lysis of HSV-infected fibroblasts, J. Leuk. Biol. 42:154.

    Google Scholar 

  100. Colmenares, C., and Lopez, C., 1986, Enhanced lysis of herpes simplex virus type-1-infected mouse cell lines by NC and NK effectors, J. Immunol. 136:3473– 3480.

    PubMed  CAS  Google Scholar 

  101. Trinchieri, G., Santoli, D., and Koprowski, H., 1978, Spontaneous cell-mediated cytotoxicity in humans: Role of interferon and immunoglobulins, J. Immunol. 120:1849– 1855.

    PubMed  CAS  Google Scholar 

  102. Trinchieri, G., and Santoli, D., 1978, Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis, J. Exp. Med. 147:1314– 1333.

    PubMed  CAS  Google Scholar 

  103. Fitzgerald, P. A., Von Wussow, P., and Lopez, C., 1982, Role of interferon in natural kill of HSV-1-infected fibroblasts, J. Immunol. 129:819– 825.

    PubMed  CAS  Google Scholar 

  104. Bishop, G. A., Glorioso, J. C., and Schwartz, S. A., 1983, Relationship between expression of herpes simplex virus glycoproteins and susceptibility of target cells to human natural killer activity, J. Exp. Med. 157:1544– 1561.

    PubMed  CAS  Google Scholar 

  105. Moller, J. R., Rager-Zisman, B., Quan, P.-C., Schattner, A., Panush, D., Rose, J. K., and Bloom, B. R., 1985, Natural killer cell recognition of target cells expressing different antigens of vesicular stomatitis virus, Proc. Natl. Acad. Sci. USA 82:2456– 2459.

    PubMed  CAS  Google Scholar 

  106. Honess, R., and Watson, D., 1977, Unity and diversity in the herpesviruses, J. Gen. Virol. 37:15– 37.

    PubMed  CAS  Google Scholar 

  107. Bishop, G. A., Manlin, S. D., Schwartz, S. A., and Glorioso, J. C., 1984, Human natural killer cell recognition of herpes simplex virus type-1 glycoproteins: Specificity analysis with the use of monoclonal antibodies and antigenic variants, J. Immunol. 133:2206– 2214.

    PubMed  CAS  Google Scholar 

  108. Bishop, G. A., Kumel, G., Schwartz, S. A., and Glorioso, J. C., 1986, Specificity of human natural killer cells in limiting dilution culture for determinants of herpes simplex virus type-1 glycoproteins, J. Virol. 57:294– 300.

    PubMed  CAS  Google Scholar 

  109. El Daher, N., and Betts, R. F., 1985, New observations regarding killing of fibroblasts infected with herpes simplex virus: Cooperation between illutable factor and peripheral mononuclear cells, J. Infect. Dis. 152:1197– 1205.

    PubMed  Google Scholar 

  110. Shore, S. L., Black, C. M., Melewicz, F. M., Wood, P. A., and Nahmias, A. J., 1976, Antibody-dependent cell-mediated cytotoxicity to target cells infected with type 1 and type 2 herpes simplex virus, J. Immunol. 116:194– 201.

    PubMed  CAS  Google Scholar 

  111. Dixon, R., and Schaffer, P. A., 1980, Fine-structure mapping and functional analysis of temperature-sensitive mutants in the gene encoding the herpes simplex virus type 1 immediate early protein VP 175, J. Virol. 36:189– 203.

    PubMed  CAS  Google Scholar 

  112. Borysiewicz, L., Rodger, B., Morris, S., Graham, S., and Sissons, J., 1985, Lysis of human cytomegalovirus-infected fibroblasts by natural killer cells: Demonstration of an interferon-independent component requiring expression of early viral proteins and characterization of effector cells, J. Immunol. 134:2695– 2701.

    PubMed  CAS  Google Scholar 

  113. Bradley, T., and Bonavida, B., 1981, Mechanism of cell-mediated cytotoxicity at the single cell level. IV. Natural killing and antibody-cellular cytotoxicity can be mediated by the same human effector cell as determined by the 2-target conjugate assay, J. Immunol. 129:2260– 2265.

    Google Scholar 

  114. Peter, H. H., Dallugge, H., Zawatzky, R., Eular, S., Leibold, W., and Kirchner, H., 1980, Human peripheral null lymphocytes. II. Producers of type-1 interferon upon stimulation with tumor cells, herpes simplex virus and Corynebacterium parvum, Eur. J. Immunol. 10:547– 555.

    PubMed  CAS  Google Scholar 

  115. Kirchner, H., Peter, H. H., Hirt, H. M., Zawatzky, R., Dalluge, H., and Bradstreet, P., 1979, Studies of the producer cell of interferon on human lymphocyte cultures, Immunobiology 156: 6575.

    Google Scholar 

  116. Djeu, Y., Stocks, N., Zoon, K., Stanton, G. J., Timonen, T., and Herberman, R. B., 1982, Positive self-regulation of cytotoxicity in human natural killer cells by production of interferon upon exposure to influenza and herpesviruses, J. Exp. Med. 156:1222– 1234.

    PubMed  CAS  Google Scholar 

  117. Fitzerald-Bocarsley, P. A., Feldman, M., Mendelsohn, M., Curl, S., and Lopez, C., 1988, Human mononuclear cells which produce interferon-alpha during NK(HSV-FS) assays are HLA-DR positive cells distinct from cytolytic natural killer cells, J. Leuk. Biol. 43:323– 334.

    Google Scholar 

  118. Perussia, B., Fanning, V., and Trinchiere, G., 1985, A leukocyte subset bearing HLA- DA antigens is responsible for in vitro alpha-interferon production in response to viruses, Nat. Immun. Cell Growth Regul. 4:120– 137.

    PubMed  CAS  Google Scholar 

  119. Fitzgerald, P. A., Mendelsohn, M., and Lopez, C., 1985, Human natural killer cells limit replication of herpes simplex virus type-1 in vitro, J. Immunol. 134:2666– 2672.

    PubMed  CAS  Google Scholar 

  120. Leibson, P. J., Hunter-Laszlo, M., and Hayward, A. R., 1986, Inhibition of herpes simplex virus type 1 replication in fibroblast cultures by human blood mononuclear cells, J. Virol. 57:976– 982.

    PubMed  CAS  Google Scholar 

  121. Leibson, P. J., Hunter-Laszlo, M., Douvas, G. S., and Hayward, A. R., 1986, Impaired neonatal natural killer-cell activity to herpesvirus: Decreased inhibition of viral replication and altered response to lymphokines, J. Clin. Immunol. 6:216– 224.

    PubMed  CAS  Google Scholar 

  122. Yasukawa, M., and Kobayashi, Y., 1985, Inhibition of herpes simplex virus replication in vitro by human cytotoxic T-cell clones and natural killer cell clones, J. Gen. Virol. 66:2225– 2229.

    PubMed  Google Scholar 

  123. Lopez, C., Kirkpatrick, D., Read, S., Fitzgerald, P. A., Pitt, J., Pahwa, S., Ching, C. Y., and Smithwick, E. M., 1983, Correlation between low natural kill of HSV-1-infected fibroblasts, NK(HSV-l) and susceptibility to herpesvirus infections, J. Infect. Dis. 147:1030– 1035.

    PubMed  CAS  Google Scholar 

  124. Kohl, S., Frazier, J. J., Greenberg, S. B., Pickering, L. K., and Loo, L.-S., 1981, Interferon induction of natural killer cytotoxicity in human neonates, J. Pediatr. 98:379– 384.

    PubMed  CAS  Google Scholar 

  125. Lipinski, M., Virelizier, J.-L., Tursz, T., and Griscelli, C., 1980, Natural killer cell activities in patients with primary immunodeficiencies or defects in immune interferon production, Eur. J. Immunol. 10:246– 249.

    PubMed  CAS  Google Scholar 

  126. Stiehm, R. E., 1980, The human neonate as an immunocompromised host, in: Infections in the Immunocompromised Host—Pathogenesis, Prevention and Therapy, Volume 11 ( J. Verhoef, P. K. Peterson, P. G. Quie, eds.), Elsevier/North-Holland, New York, p. 77.

    Google Scholar 

  127. Blaese, M., Strober, W., and Waldman, T. A., 1975, Immunodeficiency in the Wiscott- Aldrich Syndrome, in: Immunodeficiency in Man and Animals( D. Bergsman, R. A. Good, and J. Finstad, eds.), Sinauer, Sunderlind, MD., p. 250.

    Google Scholar 

  128. Fauci, A. S., Macher, A. M., Longo, D. L., Lane, H. C., Rook, A. H., Masur, H., and Gelmann, E. P., 1984, Acquired immune deficiency syndrome: Epidemiologic clinical immunologic and therapeutic considerations, Ann. Intern. Med. 100:92– 106.

    PubMed  CAS  Google Scholar 

  129. Siegal, F. P., Lopez, C., Hammer, G. S., Brown, A. E., Kornfeld, S. J., Gold, J., Hassett, J., Hirshman, S. Z., Cunningham-Rundels, C., Adelsberg, B. R., Parham, D. M., Siegal, M., Cunningham-Rundels, S., and Armstrong, D., 1981, Severe acquired immunodeficiency in male homosexuals, manifested by chronic perianal ulcerative herpes simplex lesions, N. Engl. J. Med. 305:1439– 1444.

    PubMed  CAS  Google Scholar 

  130. Lopez, C., Fitzgerald, P. A., and Siegal, F. P., 1983, Severe acquired immune deficiency syndrome in male homosexuals: Diminished capacity to make interferon-alpha in vitroassociated with severe opportunistic infections, J. Infect. Dis. 148:962– 966.

    PubMed  CAS  Google Scholar 

  131. Siegal, F. P., Lopez, C., Fitzgerald, P. A., Shah, K., Baron, P., Leiderman, I. Z., Imperato, D., and Landesman, S., 1986, Opportunistic infections in acquired immune deficiency syndrome result from synergistic defects of both the natural and adaptive components of cellular immunity, J. Clin. Invest. 78:115– 123.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Lopez, C., Fitzgerald-Bocarsly, P. (1989). Natural Host Defense Systems Active against Herpes Simplex Virus Infections. In: Reynolds, C.W., Wiltrout, R.H. (eds) Functions of the Natural Immune System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0715-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0715-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8046-0

  • Online ISBN: 978-1-4613-0715-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics