Skip to main content

Lymphokine-Activated Killer Cells

Biology and Therapeutic Efficacy

  • Chapter
Book cover Functions of the Natural Immune System

Abstract

Adoptive immunotherapy is defined as the transfer to the tumor-bearing host of immune cells with antitumor reactivity.(1) However, the generation of sufficient quantities of cells with specific antitumor reactivity has been a major obstacle to developing clinically useful adoptive immunotherapy regimens for the treatment of cancer in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenberg, S. A., and Terry, W., 1977, Passive immunotherapy of cancer in animals and man, Adv. Cancer Res. 25:323–388.

    Article  PubMed  CAS  Google Scholar 

  2. Grimm, E. A., Mazumder, A., Zhang, H., and Rosenberg, S. A., 1982, The lymphokine activated killer cell phenomenon: Lysis of NK resistant fresh solid tumor cells by IL-2 activated autologous human peripheral blood lymphocytes, J. Exp. Med. 155:1823–1841.

    Article  PubMed  CAS  Google Scholar 

  3. Yron, I., Wood, T., Spiess, P., and Rosenberg, S. A., 1980, In vitro growth of murine T cells. V. The isolation and growth of lymphoid cells infiltrating syngeneic solid tumors, J. Immunol. 125:238–245.

    PubMed  CAS  Google Scholar 

  4. Lotze, M. T., Grimm, E., Mazumder, A., Strausser, J., and Rosenberg, S. A. 1981, In vitro growth of cytotoxic human lymphocytes. IV. Lysis of fresh and cultured autologous tumor by lymphocytes cultured in T cell growth factor (TCGF), Cancer Res. 41:4420–4425.

    PubMed  CAS  Google Scholar 

  5. Rosenstein, M., Yron, I., Kaufmann, Y., and Rosenberg, S. A., 1984, Lymphokine activated killer cells: Lysis of fresh syngeneic NK resistant murine tumor ceils by lymphocytes cultured in interleukin-2, Cancer Res. 44:1946–1953.

    PubMed  CAS  Google Scholar 

  6. Yang, J., Mulé, J., and Rosenberg, S. A., 1986, Murine lymphokine activated killer (LAK) cells: Phenotypic characterization of the precursor and effector cells, J. Immunol. 137:715–722.

    PubMed  CAS  Google Scholar 

  7. Grimm, E. A., and Rosenberg, S. A., 1983, The human lymphokine activated killer cell phenomenon, in: Lymphokines, Volume 9 (E. Pick and M. Candy, eds.), Academic Press, New York, pp. 279–309.

    Google Scholar 

  8. Mulé, J., Shu, S., and Rosenberg, S. A., 1985, The anti-tumor efficacy of lymphokine- activated killer cells and recombinant interleukin 2 in vivo, J. Immunol. 135:646–652.

    PubMed  Google Scholar 

  9. Lafreniere, R., and Rosenberg, S. A., 1985, Adoptive immunotherapy of murine hepatic metastases with lymphokine activated killer (LAK) cells and recombinant interleukin-2 (RIL 2) can mediate the regression of both immunogenic and nonimmunogenic sarcomas and an adenocarcinoma, J. Immunol. 135:4273–4280.

    PubMed  CAS  Google Scholar 

  10. Rosenberg, S. A., Lotze, M., Muul, L., Chang, A., Avis, F., Leitman, S., Linehan, W. M., Robertson, C., Lee, R., Rubin, J., Seipp, C., Simpson, C., and White, D., 1987, A progress report on the treatment of 157 patients with advanced cancer using lymphokine activated killer cells and interleukin-2 or high dose interleukin-2 alone, N. Engl. J. Med. 316:889–897.

    Article  PubMed  CAS  Google Scholar 

  11. Yang, J., Mulé, J., and Rosenberg, S. A., Requirement for asialo GM1 bearing cells in the generation of murine lymphokine-activated killer cells with therapeutic efficacy, Cancer Res. (in press).

    Google Scholar 

  12. Andriole, G., Mulé, J., Hansen, C., Linehan, W. M., and Rosenberg, S. A., 1985, Evidence that lymphokine-activated killer cells and natural killer cells are distinct based on an analysis of congenitally immunodeficient mice, J. Immunol. 135:2911–2913.

    PubMed  CAS  Google Scholar 

  13. Merluzzi, V., Smith, M., and Last-Barney, K., 1986, Similarities and distinctions between murine natural killer cells and lymphokine-activated killer cells, Cell. Immunol. 100:563–569.

    Article  PubMed  CAS  Google Scholar 

  14. Ballas, Z., 1986, Lymphokine-activated killer (LAK) cells. I. Differential recovery of a LAK natural killer cells, and cytotoxic T lymphocytes after a sublethal dose of cyclophosphamide, J. Immunol. 137:2380–2384.

    PubMed  CAS  Google Scholar 

  15. Merluzzi, V., 1985, Comparison of murine lymphokine-activated killer cells, natural killer cells, and cytotoxic T lymphocytes, Cell. Immunol. 95:95–104.

    Article  PubMed  CAS  Google Scholar 

  16. Ballas, Z., Rasmussen, W., and Van Otegham, J., 1987, Lymphokine-activated killer cells. II. Delineation of distinct murine LAK-precursor subpopulations, J. Immunol. 138:1647–1652.

    PubMed  CAS  Google Scholar 

  17. Lefor, A., Eisenthal, A., and Rosenberg, S. A., 1988, Heterogeneity of lymphokine activated killer cells induced by interleukin-2: Separate lymphoid subpopulations lyse tumor, allogeneic blasts, and modified syngeneic blasts. J. Immunol. 140:4062–4069.

    PubMed  CAS  Google Scholar 

  18. Lefor, A., and Rosenberg, S. A., 1988, The specificity of lymphokine activated killer (LAK) cells in vitro: Fresh normal murine tissues are resistant to LAK mediated lysis. (Submitted.)

    Google Scholar 

  19. Shiloni, E., Eisenthal, A., Sachs, D., and Rosenberg, S. A., 1987, Antibody-dependent cellular cytotoxicity mediated by murine lymphocytes activated in recombinant interleu- kin 2, J. Immunol. 138:1992–1998.

    PubMed  CAS  Google Scholar 

  20. Papa, M., Mulé, J., and Rosenberg, S. A., 1986, Antitumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo: Successful immunotherapy of established pulmonary metastases from weakly immunogenic and nonimmunogenic murine tumors of three distinct histological types, Cancer Res. 46:4973–4978.

    PubMed  CAS  Google Scholar 

  21. Mulé, J., Shu, S., Schwarz, S., and Rosenberg, S. A., 1984, Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2, Science 225:1487–1489.

    Article  PubMed  Google Scholar 

  22. Mazumder, A., and Rosenberg, S. A., 1984, Successful immunotherapy of natural killer-resistant established pulmonary melanoma metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin 2, J. Exp. Med. 159:495–507.

    Article  PubMed  CAS  Google Scholar 

  23. Mulé, J., Shu, S., and Rosenberg, S. A., 1985, The antitumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo, J. Immunol. 135:646–652.

    PubMed  Google Scholar 

  24. Rosenberg, S. A., Mulé, J., Spiess, P., Reichert, C., and Schwarz, S., 1985, Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2, J. Exp. Med. 161:1169–1188.

    Article  PubMed  CAS  Google Scholar 

  25. Mulé, J., Ettinghausen, S., Spiess, P., Shu, S., and Rosenberg, S. A., 1986, Antitumor efficacy of lymphokine-activated killer cells and recombinant interleukin-2 in vivo: survival benefit and mechanisms of tumor escape in mice undergoing immunotherapy, Cancer Res. 46:676–683.

    PubMed  Google Scholar 

  26. Mulé, J., Yang, J., Shu, S., and Rosenberg, S. A., 1986, The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo: Direct correlation between reduction of established metastases and cytolytic activity of lymphokine-activated killer cells, J. Immunol. 136:3899–3909.

    PubMed  Google Scholar 

  27. Lafreniere, R., and Rosenberg, S. A., 1986, A novel approach to the generation and identification of experimental hepatic metastases in a murine model, JNCI 76:309–322.

    PubMed  CAS  Google Scholar 

  28. Shiloni, E., Lafreniere, R., Mulé, J., Schwarz, S., and Rosenberg, S. A., 1986, Effect of immunotherapy with allogeneic lymphokine-activated killer cells and recombinant interleukin 2 on established pulmonary and hepatic metastases in mice, Cancer Res. 46:5633–5640.

    PubMed  CAS  Google Scholar 

  29. Eisenthal, A., Lafreniere, R., Lefor, A., and Rosenberg, S. A., 1987, The effect of anti B16 melanoma monoclonal antibody on established murine B16 melanoma liver metastases, Cancer Res. 47:2771–2776.

    PubMed  CAS  Google Scholar 

  30. Rosenstein, M., Ettinghausen, S., and Rosenberg, S. A., 1986, Extravasation of intravascular fluid mediated by the systemic administration of recombinant interleukin 2, J. Immunol. 137:1735–1742.

    PubMed  CAS  Google Scholar 

  31. Papa, M., Vetto, J., Ettinghausen, S., Mulé, J., and Rosenberg, S. A., 1986, Effect of corticosteroid on the antitumor activity of lymphokine-activated killer cells and interleukin 2 in mice, Cancer Res. 46:5618–5623.

    PubMed  CAS  Google Scholar 

  32. Ettinghausen, S., Lipford, E., Mulé, J., and Rosenberg, S. A., 1985, Recombinant interleukin 2 stimulates in vivo proliferation of adoptively transferred lymphokine-activated killer (LAK) cells, J. Immunol. 135:3623–3635.

    PubMed  CAS  Google Scholar 

  33. Ettinghausen, S., and Rosenberg, S. A., 1986, Immunotherapy of murine sarcomas using lymphokine activated killer cells: Optimization of the schedule and route of administration of recombinant interleukin-2, Cancer Res. 46:2784–2792.

    PubMed  CAS  Google Scholar 

  34. Itoh, K., Tilden, A., Kumagai, K., and Balch, C., 1985, Leu-11+ lymphocytes with natural killer (NK) activity are precursors of recombinant interleukin 2 (rIL 2) induced activated killer (AK) cells, J. Immunol. 134:802–807.

    PubMed  CAS  Google Scholar 

  35. Roberts, K., Lotze, M., and Rosenberg, S. A., 1987, Separation and functional studies of the human lymphokine activated killer cell. Cancer Res. 47:4366–4371.

    PubMed  CAS  Google Scholar 

  36. Skibber, J., Lotze, M., Muul, L., Uppenkamp, I., Ross, W., and Rosenberg, S. A., 1987, Human lymphokine activated killer cells: Isolation and characterization of the precursor and effector cell, Nat. Immun. Cell Growth Reg. 6:291–305.

    CAS  Google Scholar 

  37. Burns, G., Triglia, T., and Werkmeister, J., 1984, In vitro generation of human activated killer cells: Separate precursors and modes of generation of NK-like cells and “anomolous” killer cells, J. Immunol. 133:1656–1665.

    PubMed  CAS  Google Scholar 

  38. Lotze, M., Custer, M., and Rosenberg, S. A., 1988, Interleukin 2 (IL-2) administration to human results in rapid emigration of a specific lymphocyte subset (CD2 +, 3 –, 11 +, 16 +) from the peripheral blood. (Submitted.)

    Google Scholar 

  39. Philips, J., and Lanier, L., 1986, Dissection of the lymphokine activated killer phenomenon: Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis, J. Exp. Med. 164:814–825.

    Article  Google Scholar 

  40. Ortaldo, J., Mason, A., and Overton, R., 1986, Lymphokine activated killer cells: Analysis of progenitors and effectors, J. Exp. Med. 164:1193–1205.

    Article  PubMed  CAS  Google Scholar 

  41. Sondel, P., Hank, J., Kohler, P., Chen, B., Minkoff, D., and Molenda, J., 1986, Destruction of autologous human lymphocytes by interleukin 2 activated cytotoxic cells, J. Immunol. 137:502–511.

    PubMed  CAS  Google Scholar 

  42. Lotze, M., Frana, L., Sharrow, S., Robb, R., and Rosenberg, S. A., 1985, In vivo administration of purified human interleukin 2. I. Half life and immunologic effects of the Jurkat cell line derived interleukin 2, J. Immunol. 134:157–166.

    PubMed  CAS  Google Scholar 

  43. Lotze, M., Matory, Y., Ettinghausen, S., Rayner, A., Sharrow, S., Seipp, C., Custer, M., and Rosenberg, S. A., 1985, In vivo administration of purified human interleuken 2. II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2, J. Immunol 135:2865–2875.

    PubMed  CAS  Google Scholar 

  44. Mazumder, A., Eberlein, T., Grimm, E., Lotze, M., and Rosenberg, S. A., 1984, Phase I study of the adoptive immunotherapy of human cancer with lectin activated autologous mononuclear cells, Cancer 53:896–905.

    Article  PubMed  CAS  Google Scholar 

  45. Rosenberg, S. A., 1984, Immunotherapy of cancer by systemic administration of lymphoid cells plus interleukin-2, J. Biologic Response Modifiers 3:501–511.

    CAS  Google Scholar 

  46. Muul, L., Director, E., Hyatt, C., and Rosenberg, S. A., 1986, Large scale production of human lymphokine activated killer cells for use in adoptive immunotherapy, J. Immunol Methods 88:265–275.

    Article  PubMed  CAS  Google Scholar 

  47. Rosenberg, S. A., Lotze, M., Muul, L., Leitman, S., Chang, A., Ettinghausen, S., Matory, Y., Skibber, J., Shiloni, E., Vetto, J., Seipp, C., Simpson, C., and Reichert, C., 1985, Observations on the systemic administration of autologous lymphokine activated killer cells and recombinant interleukin-2 to patients with metastatic cancer, N. Engl J. Med. 313:1485–1492.

    Article  PubMed  CAS  Google Scholar 

  48. Okuno, K., Takagi, T., Nakamura, N., Nakamura, Y., Iwasa, Z., and Yasutomi, M., 1986, Treatment for unresectable hepatoma via selective hepatic arterial infusion of lymphokine activated killer cells generated from autologous spleen cells, Cancer 58:1001–1006.

    Article  PubMed  CAS  Google Scholar 

  49. Lotze, M., Custer, M., and Rosenberg, S. A., 1986, Intraperitoneal administration of interleukin-2 in patients with cancer, Arch. Surg. 121:1373–1379.

    PubMed  CAS  Google Scholar 

  50. West, W., Tauer, K., Yannelli, J., Marshall, G., Orr, D., Thurman, G., and Oldham, R., 1987, Constant infusion recombinant interleukin 2 in adoptive immunotherapy of advanced cancer, N. Engl J. Med. 316:898–905.

    Article  PubMed  CAS  Google Scholar 

  51. Herberman, R. B., Wiltrout, R. H., and Gorelik, E. (eds.), 1987, Immune Responses to Metastases, CRC Press, Boca Raton, FL.

    Google Scholar 

  52. Mantovani, A., Bottazzi, B., Allavena, P., and Balotta, C., 1987, Tumor associated leukocytes in metastasizing tumors, in: Immune Responses to Metastases (R. B. Herberman, R. H. Wiltrout, and E. Gorelik, eds.), CRC Press, Boca Raton, FL, pp. 106–118.

    Google Scholar 

  53. Wiltrout, R. H., Herberman, R. B., Zhang, S.-R., Chirigos, M. A., Ortaldo, J. R., Green, L. M., Jr., and Talmadge, J. E., 1985, Role of organ-associated NK cells in decreased formation of experimental metastases in lung and liver, J. Immunol. 134:4267–4275.

    PubMed  CAS  Google Scholar 

  54. Nicolson, G. L., 1987, Tumor cell instability, diversification, and progression to the metastatic phenotype: From oncogene to oncofetal expression, Cancer Res. 47:1473–1487.

    PubMed  CAS  Google Scholar 

  55. Koo, G. C., Dumont, F., Tutt, M., Hackett, J. Jr., and Kumar, V., 1986, The NK1.1(-) mouse: A model to study the differentiation of murine NK cells, J. Immunol. 138:3742–3747.

    Google Scholar 

  56. Seaman, W. E., Sleisenger, M., Eriksson, E., and Koo, G. C., 1987, Depletion of natural killer cells in mice by monoclonal antibody to NK1.1. Reduction in host defense against malignancy without loss of cellular or humoral immunity, J. Immunol. 138:4539–4544.

    PubMed  CAS  Google Scholar 

  57. Luster, M. I., Germolec, D. R., Burleson, G. R., Jameson, C. W., Ackerman, M. F., Lamm, K. R., and Hayes, H. T., 1987, Selective immunosuppression in mice of natural killer cell activity by ochratoxin A, Cancer Res. 47:2259–2263.

    PubMed  CAS  Google Scholar 

  58. Talmadge, J. E., Herberman, R. B., Chirigos, M. A., Schneider, M. A., Adams, J. S., Phillips, H., Thurman, G. B., Varesio, L., Long, C. A., Oldham, R. K., and Wiltrout, R. H., 1985, Augmentation or induction of a hyporesponsiveness of murine NK activity by various classes of immunomodulators including recombinant interferons and interleu- kin 2, J. Immunol. 135:2483–2491.

    PubMed  CAS  Google Scholar 

  59. Salup, R. R., Mathieson, B. J., and Wiltrout, R. H., 1987, Precursor phenotype of lym- phokine-activated killer cells in the mouse, J. Immunol. 138:3635–3639.

    PubMed  CAS  Google Scholar 

  60. Salup, R. R., Back, T. J., and Wiltrout, R. H., 1987, Successful treatment of advanced murine renal cell cancer by bicompartmental adoptive chemoimmunotherapy, J. Immunol. 138:641–647.

    PubMed  CAS  Google Scholar 

  61. Brunda, M. J., Bellantoni, D., and Sulich, V., 1987, In vivo antitumor activity of combinations of interferon alpha and interleukin 2 in a murine model. Correlation of efficacy with the induction of cytotoxic cells resembling natural killer cells, Int. J. Cancer 40:365–371.

    Article  PubMed  CAS  Google Scholar 

  62. Wiltrout, R. H., Boyd, M. R., Back, T. T., Salup, R. R., and Hornung, R. L., 1988, Flavone-8-acetic acid augments systemic natural killer cell activity and synergizes with interleukin 2 for treatment of murine renal cancer, J. Immunol. 140:3261–3265.

    PubMed  CAS  Google Scholar 

  63. Ching, L., and Baguley, B. C., 1987, Induction of natural killer cell activity by the anti-tumor compound flavone acetic acid (NSC 347512), Eur. J. Cancer Clin. Oncol. 23:1047–1050.

    Article  PubMed  CAS  Google Scholar 

  64. Wiltrout, R. H. and Hornung, R. L., 1988, Natural products as antitumor agents: Direct versus indirect mechanisms of activity of flavonoids, J. Natl. Cancer Inst. 80:21–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Lefor, A.T., Mulé, J.J., Rosenberg, S.A. (1989). Lymphokine-Activated Killer Cells. In: Reynolds, C.W., Wiltrout, R.H. (eds) Functions of the Natural Immune System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0715-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0715-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8046-0

  • Online ISBN: 978-1-4613-0715-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics