Skip to main content

Control of Hematopoietic Progenitor Cells by Natural Killer Cells

  • Chapter
Book cover Functions of the Natural Immune System

Abstract

In adult animals and in physiological conditions, hematopoiesis occurs only in the bone marrow and in lymphoid organs, and it is not observed in organs such as liver or spleen, sites of fetal hematopoiesis. Precursor cells committed to erythroid and myeloid hematopoietic lineages originate from pluripotent stem cells and, through several cycles of cell division, give rise to terminally differentiated cells.(1) The entire process of hematopoiesis is regulated by the equilibrium between the self-renewal capability of the stem cell and the commitment to differentiate along one or more hematopoietic lineages. The maintenance of this equilibrium underlies the hematopoietic homeostasis necessary for the continuous production of the different types of hematopoietic cells required in physiological conditions. The regulation of hematopoiesis is also sufficiently flexible to enable hematopoietic organs to respond effectively to pathological situations (e.g., during bleeding or infections) requiring a rapidly increased production of a particular blood cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Till, J. E., and McCulloch, E. A., 1961, A direct measurement of the radiation sensitivity of normal mouse bone marrow cells, Radiat. Res. 14:213–222.

    Article  PubMed  CAS  Google Scholar 

  2. Metcalf, D ., 1986, The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors, Blood 67:257–267.

    PubMed  CAS  Google Scholar 

  3. Cline, M. J., and Golde, D. W., 1974, Production of colony-stimulating activity by human lymphocytes, Nature 248:703–704.

    Article  PubMed  CAS  Google Scholar 

  4. Nakahata, T., and Ogawa, M., 1982, Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors, J. Clin. Invest. 70:1324–1328.

    Article  PubMed  CAS  Google Scholar 

  5. Fauser, A. A., and Messner, H. A., 1978, Granuloerythropoietic colonies in human marrow, peripheral blood and cord blood, Blood 52:1243–1248.

    PubMed  CAS  Google Scholar 

  6. Haller, O., and Wigzell, H., 1977, Suppression of natural killer cell activity with radioactive strontium: Effector cells are marrow dependent, J. Immunol. 118:1503–1506.

    PubMed  CAS  Google Scholar 

  7. Perussia, B., Starr, S., Abraham, S., Fanning, V., and Trinchieri, G., 1983, Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1, J. Immunol. 130:2133–2141.

    PubMed  CAS  Google Scholar 

  8. Bagby, G. C., Lawrence, H. J., and Neerhout, R. C., 1983, T-lymphocyte-mediated granulopoietic failure. In vitro identification of prednisone-responsive patients, N. Engl. J. Med. 309:1073–1078.

    Article  PubMed  Google Scholar 

  9. Cudkowicz, G., and Stimpfling, J. H., 1964, Deficient growth of C57B1 mouse marrow cells transplanted in F1 hybrid mice. Association with the histocompatibility-2 locus, Immunology 7:291–306.

    PubMed  CAS  Google Scholar 

  10. Cudkowicz, G., and Hochman, P. S., 1979, Do natural killer cells engage in regulated reaction against self to ensure homeostasis? Immunol. Rev.44:13–41.

    Article  PubMed  CAS  Google Scholar 

  11. Kiessling, R., Hochman, P. S., Haller, O., Shearer, G. M., Wigzell, H., and Cudkowicz, G., 1977, Evidence for a similar or common mechanism for natural killer cell activity and resistance to hemopoietic grafts, Eur.J. Immunol.7:655–663.

    Article  PubMed  CAS  Google Scholar 

  12. Cudkowicz, G., and Bennett, M., 1971, Peculiar immunobiology of bone marrow allografts. I. Graft rejection by heavily “responder” mice, J. Exp. Med. 134:83–102.

    Article  PubMed  CAS  Google Scholar 

  13. Clark, E. A., and Harmon, R. C., 1980, Genetic control of natural cytotoxicity and hybrid resistance, Adv. Cancer Res. 31:227–285.

    Article  PubMed  CAS  Google Scholar 

  14. Okumura, K., Habu, S., and Shimamura, K., 1982, The role of asialo GM1+ (GA1 +) cells in the resistance to transplants of bone marrow or other tissues, in: Nk Cells and Other Natural Effector Cells (R. B. Herberman, ed.), Academic Press, New York, pp. 1527 – 1533.

    Google Scholar 

  15. Lotzova, E., Pollack, S. B., and Savary, C. A., 1982, Direct evidence for the involvement of natural killer cells in bone marrow transplantation, in: NK Cells and Other Natural Effector Cells (R. B. Herberman, ed.), Academic press, New York, pp. 1535–1540.

    Google Scholar 

  16. Harrison, D. E., and Carlson, G. A., 1983, Effect of the beige mutation on natural resistance to marrow grafts, J. Immunol. 130:484–489.

    PubMed  CAS  Google Scholar 

  17. Warner, S. F., and Dennert, G., 1982, Effects of a cloned cell line with NK activity on bone marrow transplants, tumor development and metastasis in vivo, Nature 300:31–34.

    Article  PubMed  CAS  Google Scholar 

  18. Bordignon, C., Daley, J. P., and Nakamura, I., 1985, Hematopoietic histoincompatibility reactions by NK cells in vitro: Model for genetic resistance to marrow grafts, Science 230:1398–1401.

    Article  PubMed  CAS  Google Scholar 

  19. Holmberg, L. A., Miller, B. A., and Ault, K., 1984, The effect of natural killer cells on the development of syngeneic hematopoietic progenitors, J. Immunol. 133:2933–2939.

    PubMed  CAS  Google Scholar 

  20. Daley, J. P., and Nakamura, I., 1984, Natural resistance of lethally irradiated F1 hybrid mice to parental marrow grafts 8is a function of H-2/Hh restricted effectors, J. Exp. Med. 159:1132–1148.

    Article  PubMed  CAS  Google Scholar 

  21. Warner, J. F., and Dennert, G., 1985, Bone marrow graft rejection as a function of antibody-directed natural killer cells, J. Exp. Med. 161:563–576.

    Article  PubMed  CAS  Google Scholar 

  22. Randrup Thomsen, A., Pisa, P., Bro-Jorgensen, K., and Kiessling, R., 1986, Mechanisms of lymphocytic choriomeningitis virus-induced hemopoietic dysfunction, J. Virol. 59:428–433.

    Google Scholar 

  23. Bro-Jorgensen, K., 1978, The interplay between lymphocytic choriomeningitis virus, immune function, and hemopoiesis in mice, Adv. Virus Res. 22:327–369.

    Article  PubMed  CAS  Google Scholar 

  24. Bro-Jorgensen, K., and Knudtzon, S., 1977, Changes in hemopoiesis during the course of the acute LCM virus infection in mice, Blood 49:47–57.

    PubMed  CAS  Google Scholar 

  25. Welsh, R. M., 1978, Cytotoxic cells induced during lymphocytic choriomeningitis virus infection of mice. I. Characterization of natural killer cell induction, J. Expl. Med. 148:163–181.

    Article  Google Scholar 

  26. Biron, C. A., and Welsh, R. M., 1982, Blastogenesis of natural killer cells during viral infection in vivo, J. Immunol. 129:2788–2795.

    PubMed  CAS  Google Scholar 

  27. Bagby, G. C., 1981, T. lymphocytes involved in inhibition of granulopoiesis in two neu-tropenic patients are of the cytotoxic/suppressor (T3+ T8+) subset, J. Clin. Invest 68:1597–1600.

    Article  PubMed  Google Scholar 

  28. Zoumbos, N. C., Gascon, P., Djeu, J., Trost, S. R., and Young, N. S., 1985, Circulating activated suppressor T lymphocytes in aplastic anemia, N. Engl. J. Med. 312:257–265.

    Article  PubMed  CAS  Google Scholar 

  29. Abo, T., and Balch, C., 1981, A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1), J. Immunol. 127:1024–1029.

    PubMed  CAS  Google Scholar 

  30. Lanier, L. L., Kipps, T. J., and Phillips, J. H., 1985, Functional properties of a unique subset of cytotoxic CD3+ T lymphocytes that express Fc receptors for IgG (CD16/Leul 1 antigen), J. Exp. Med.162:2089–2106.

    Article  PubMed  CAS  Google Scholar 

  31. Reynolds, C. W, and Foon, K. A., 1984, T-lymphoproliferative disorders in man and experimental animals: A review of the clinical cellular and functional characteristics, Blood 64:1146–1158.

    PubMed  CAS  Google Scholar 

  32. Van De Griend, R. J., and Bolhuis, R. L. H., 1985, In vitro expansion and analysis of cloned cytotoxic T cells derived from patients with chronic T lymphoproliferative disorders, Blood 65:1002–1009.

    PubMed  Google Scholar 

  33. Pistoia, V., Prasthofer, E. F., Tilden, A. B., Barton, J. C., Ferrarrini, M., Grossi, C. E., and Zuckerman, K. S., 1986, Large granular lymphocytes (LGL) from patients with expanded LGL populations acquire cytotoxic functions and release lymphokines upon in vitro activation, Blood 68:1095–1100.

    PubMed  CAS  Google Scholar 

  34. Rambaldi, A., Pelicci, P., Allavena, P., Knowles, D. M., Rossini, S., Bassan, R., Barbri, T., Dala-Favera, R., and Montovani, A., 1985, T cell receptor)8 chain gene rearrangements in lymphoproliferative disorders of large granular lymphocytes/natural killer cells, J. Exp. Med. 162:2156–2162.

    Article  PubMed  CAS  Google Scholar 

  35. Chan, W. C., Link, S., Mawle, A., Check, I., Byrnes, R. K., and Winton, E. G., 1986, Heterogeneity of large granular lymphocyte proliferations: Delineation of two major subtypes, Blood 68:1142–1153.

    PubMed  CAS  Google Scholar 

  36. McKenna, R. W., Arthur, D. C., Gajl-Paczalska, K. J., Flynn, P., and Brunning, R. D., 1985, Granulated T cell lymphocytosis with neutropenia: Malignant or benign chronic lymphoproliferative disorder? Blood 66:259–266.

    PubMed  CAS  Google Scholar 

  37. Pistoia, V., Carroll, A. J., Prasthofer, E. F., Tilden, A. B., Zuckerman, K. S., Ferrarini, M., and Grossi, C. E., 1986, Establishment of TAC-negative, IL-2-dependent cytotoxic cell lines from large granular lymphocytes (LGL) of patients with expanded LGL populations, J. Clin. Immunol. 6:457–466.

    Article  PubMed  CAS  Google Scholar 

  38. Koizumi, S., Seki, H., Tachinami, T., Taniguchi, M., Matsuda, A., Taga, K., Nakarai, T., Kato, E., Taniguchi, N., and Nakamura, H., 1986, Malignant clonal expansion of large granular lymphocytes with a Luell +, Leu-7- surface phenotype: In vitro responsiveness of malignant cells to recombinant human interleukin 2, Blood 68:1065–1073.

    PubMed  CAS  Google Scholar 

  39. Tagawa, S., Tokumine, Y., Ueda, E., Waki, K., Kanayama, Y., Taniguchi, N., Nakanishi, T., Inoue, R., and Kitani, T., 1986, Luell+ T cell chronic lymphocytic leukemia with partially activated natural killer function and its further activation by recombinant IL-2 in vitro, Blood 68:846–852.

    PubMed  CAS  Google Scholar 

  40. Grillot-Courvalin, C., Vinci, G., Tsapis, A., Dokhelar, M. C., Vainchenker, W., and Brouet, J. C., 1987, The syndrome of T8 hyperlymphocytosis: Variation in phenotype and cytotoxic activities of granular cells and evaluation of their role in associated neutropenia, Blood 69:1204–1210.

    PubMed  CAS  Google Scholar 

  41. Friemark, B., Lanier, L., Phillips, J., Quertermous, T., and Fox, R., 1987, Comparison of T cell receptor gene rearrangement in patients with large granular T cell leukemia and Felty’s syndrome, J. Immunol. 138:1724–1729.

    Google Scholar 

  42. Loughran, T. P. J., Clark, E. A., Price, T. H., and Hammond, W. P., 1986, Adult-onset cyclic neutropenia is associated with increased large granular lymphocytes, Blood 68:1082–1087.

    PubMed  Google Scholar 

  43. Linch,D. C., Newland, A. C., Turnbull, A. L., Knott, L. J., MacWhannel, A., and Beverley, P., 1984, Unusual T cell proliferations and neutropenia in rheumatoid arthritis: Comparison with classical Felty’s syndrome, Scand. J. Haematol. 33:342–350.

    Article  PubMed  CAS  Google Scholar 

  44. Torok-Storb, B. J., Sieff, C., Storb, R., Adamson, J., and Thomas, E. D., 1980, In vitro tests for distinguishing possible immune-mediated aplastic anemia from transfusion-in- duced sensitization, Blood 55:211–215.

    PubMed  CAS  Google Scholar 

  45. Bacigalupo, A., Podesta, M., Mingari, M. C., Moretta, L., Van Lint, M. T., and Marmont, A., 1980, Immune suppression of hematopoiesis in aplastic anemia: Activity of T lymphocytes, J. Immunol. 125:1449–1453.

    PubMed  CAS  Google Scholar 

  46. Goss, G. D., Wittwer, M. A., Bezwoda, W. R., Herman, J., Rabson, A., Seymour, L., Derman, D. P., and Mendelow, B., 1985, Effect of natural killer cells on syngeneic bone marrow: In vitro and in vivo studies demonstrating graft failure due to NK cells in an identical twin treated by bone marrow transplantation, Blood 60:1043–1046.

    Google Scholar 

  47. Kiessling, R., and Wigzell, H., 1981, Surveillance of primitive cells by natural killer cells, Curr. Top. Microbiol. Immunol. 92:107–123.

    PubMed  CAS  Google Scholar 

  48. Hansson, M., Kiessling, R., and Andersson, B., 1981, Human fetal thymus and bone marrow contain target cells for natural killer cells, Eur. J. Immunol. 11:8–12.

    Article  PubMed  CAS  Google Scholar 

  49. Hansson, M., Kiessling, R., Andersson, B., Karre, K., and Roder, J., 1979, Natural killer (NK) sensitive T-cell subpopulation in the thymus: Inverse correlation to NK activity of the host, Nature 278:174–176.

    Article  PubMed  CAS  Google Scholar 

  50. Riccardi, C., Santoni, A., Barlozzari, T., and Herberman, R. B., 1981, In vivo reactivity of mouse natural killer (NK) cells against normal bone marrow cells, Cell. Immunol. 60:136–143.

    Article  PubMed  CAS  Google Scholar 

  51. Gidlund, M., Nose, M., Axberg, I., Wigzell, H., Totterman, T., and Nilsson, K., 1982, Analysis of differentiation events causing changes in NK cell tumor-target sensitivity, In: NK Cells and Other Natural Effector Cells (R. B. Herberman, ed.), Academic Press, New York, pp. 733–741.

    Google Scholar 

  52. Morris, T. C. M., Vincent, P. C., Sutherland, R., and Hersey, P., 1980, Inhibition of normal granulopoiesis in vitro by non-B non-T lymphocytes, Br. J. Haematol. 45:541–550.

    Article  PubMed  CAS  Google Scholar 

  53. Barr, R. D., and Stevens, C. A., 1982, The role of autologous helper and suppressor T cells in the regulation of human granulopoiesis, Am. J. Hematol. 12:323–326.

    Article  PubMed  CAS  Google Scholar 

  54. Hansson, M., Beran, M., Andersson, B., and Kiessling, R., 1982, Inhibition of in vitro granulopoiesis by autologous and allogeneic human NK cells, J. Immunol. 129:126–132.

    PubMed  CAS  Google Scholar 

  55. Timonen, T., and Saksela, E., 1980, Isolation of human natural killer cells by density gradient centrifugation, J. Immunol. Methods 36:285–291.

    Article  PubMed  CAS  Google Scholar 

  56. Spitzer, G., and Verma, D. S., 1982, Cells with Fc receptors from normal donors suppress granulocyte-macrophage colony formation, Blood 60:758–766.

    PubMed  CAS  Google Scholar 

  57. Matera, L., Santoli, D., Garbarino, G., Pegoraro, L., Bellone, G., and Pagliardi, G., 1986, Modulation of in vitro myelopoiesis by LGL: Different effects on early and late progenitor cells, J. Immunol. 136:1260–1265.

    PubMed  CAS  Google Scholar 

  58. Beran, M., Hansson, M., and Kiessling, R., 1983, Human natural killer cells can inhibit clonogenic growth of fresh leukemic cells, Blood 61:596–599.

    PubMed  CAS  Google Scholar 

  59. Trinchieri, G., and Santoli, D., 1978, Antiviral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis, J. Exp. Med. 147:1314–1333.

    Article  PubMed  CAS  Google Scholar 

  60. Trinchieri, G., Granato, D., and Perussia, B., 1981, Interferon-induced resistance of fibroblasts to cytolysis mediated by natural killer cells: Specificity and mechanism, J. Immunol 126:335–340.

    PubMed  CAS  Google Scholar 

  61. Mangan, K. F., Chikkappa, G., Bieler, L. F., Scharfman, W. B., and Parkinson, D. R., 1982, Regulation of human blood erythroid burst-forming unit (BFU-E) proliferation by T-lymphocyte subpopulations defined by Fc receptors and monoclonal antibodies, Blood 59:990–996.

    PubMed  CAS  Google Scholar 

  62. Degliantoni, G., Perussia, B., Mangoni, L., and Trinchieri, G., 1985, Inhibition of bone marrow colony formation by human natural killer cells and by natural killer cell-derived colony-inhibiting activity, J. Exp. Med. 161:1152–1168.

    Article  PubMed  CAS  Google Scholar 

  63. Degliantoni, G., Murphy, M. Kobayashi, M., Francis, M. K., Perussia, B., and Trinchieri, G., 1985, Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon, J. Exp. Med. 162:1512–1530.

    Article  PubMed  CAS  Google Scholar 

  64. Herrmann, F., Schmidt, R. E., Ritz, J., and Griffin, J. D., 1987, In vitro regulation of human hematopoiesis by natural killer cells: Analysis at a clonal level, Blood 69:246–254.

    PubMed  CAS  Google Scholar 

  65. Zoumbos, N., Raefsky, E., and Young, N., 1986, Lymphokines and hematopoiesis, Prog. Hematol. 14:201–227.

    PubMed  CAS  Google Scholar 

  66. Nathan, D. G., Chess, L., Hillman, D. G., Clark, B., Breard, J., Merler, E., and Housman, D. E., 1978, Human erythroid burst forming unit (BFU-E): T cell requirement for proliferation in vitro, J. Exp. Med. 147:324–339.

    Article  PubMed  CAS  Google Scholar 

  67. Herrmann, F., Cannistra, S. A., and Griffin, J. D., 1986, T cell-monocyte interactions in the production of humoral factors regulating human granulopoiesis in vitro, J. Immunol. 136:2856–2861.

    PubMed  CAS  Google Scholar 

  68. Munker, R., Gasson, J., Ogawa, M., and Koeffler, H. P., 1986, Recombinant human TNF induces production of granulocyte-monocyte colony-stimulating factor, Nature 323:79–82.

    Article  PubMed  CAS  Google Scholar 

  69. Trinchieri, G., and Perussia, B., 1984, Human natural killer cells: Biologic and pathologic aspects, Lab. Invest. 50:489–513.

    PubMed  CAS  Google Scholar 

  70. Scala, G., Allavena, P., Djeu, J. Y., Kasahara, T., Ortaldo, J. R., Herberman, R. B., and Oppenheim, J. J., 1984, Human large granular lymphocytes are potent producers of interleukin-1, Nature 309:56–59.

    Article  PubMed  CAS  Google Scholar 

  71. Trinchieri, G., Matsumoto-Kobayashi, M., Clark, S. C., Sheehra, J., London, L., and Perussia, B., 1984, Response of resting human peripheral blood natural killer cells to interleukin-2, J. Exp. Med. 160:1147–1169.

    Article  PubMed  CAS  Google Scholar 

  72. Pistoia, V., Cozzolino, F., Torcia, M., Castigli, E., and Ferrarini, M., 1985, Production of B cell growth factor by a Leu7+, OKM1+ non-T cell with the features of large granular lymphocytes (LGL), J. Immunol. 134:3179–3184.

    PubMed  CAS  Google Scholar 

  73. Linch, D. C., Lipton, J. M., and Nathan, D. G., 1985, Identification of three accessory cell populations in human bone marrow with erythroid burst-promoting properties, J. Clin. Invest. 75:1278–1284.

    Article  PubMed  CAS  Google Scholar 

  74. Pistoia, V., Ghio, R., Nocera, A., Leprini, A., Perata, A., and Ferrani, M., 1985, Large granular lymphocytes have a promoting activity on human peripheral blood erythroid burst-forming units, Blood 65:464–472.

    PubMed  CAS  Google Scholar 

  75. Kasahara, T., Djeu, J. Y., Dougherty, S. F., and Oppenheim, J. S., 1983, Capacity of human large granular lymphocytes (LGL) to produce multiple lymphokines: Interleukin 2, interferon and colony stimulating factor, 131:2379–2385.

    CAS  Google Scholar 

  76. Stanley, E. R., Bartocci, A., Patinkin, D., Rosendaal, M., and Bradley, T. R., 1986, Regulation of very primitive multipotent hempoietic cells by hemopoietin-1, Cell 45:667–674.

    Article  PubMed  CAS  Google Scholar 

  77. Sieff, C. A., Tsai, S., and Faller, D. V., 1987, Interleukin 1 induces cultured human endothelial cell production of granulocyte-macrophage colony-stimulating factor, J. Clin. Invest. 79:48–51.

    Article  PubMed  CAS  Google Scholar 

  78. Zoumbos, N. C., Gascon, P., Djeu, J. Y., and Young, N. S., 1985, Interferon is a mediator of hematopoietic suppression in aplastic anemia in vitro and possibly in vivo, Proc. Natl. Acad. Sci USA 82:188–192.

    Article  PubMed  CAS  Google Scholar 

  79. Broxmeyer, H. E., Lu, L., Platzer, E., Feit, C., Juliano, L., and Rubin, B. Y., 1983, Comparative analysis of the influences of human gamma, alpha, and beta interferons on human multipotential (CFU-GEMM), erythroid (BFU-E) and granulocyte-macrophage (CFU-GM) progenitor cells, J. Immunol. 131:1300–1305.

    PubMed  CAS  Google Scholar 

  80. Djeu, J. Y., Stocks, N., Zoon, K., Stanton, G. J., Timonen, T., and Herberman, R. B., 1982, Positive self regulation of cytotoxicity in human natural killer cells by production of interferon upon exposure to influenza and herpes virus, J. Exp. Med. 156:1222–1234.

    Article  PubMed  CAS  Google Scholar 

  81. Perussia, B., Fanning, V., and Trinchieri, G., 1985, A leukocyte subset bearing HLA- DR antigens is responsible for in vitro alpha interferon production in response to viruses, Nat. Immun. Cell Growth Regul. 4:120–137.

    PubMed  CAS  Google Scholar 

  82. Bandyopadhyay, S., Perussia, B., Trinchieri, G., Miller, D. S., and Starr, S. E., 1986, Requirement for HLA-DR positive accessory cells in natural killing of cytomegalovirus- infected fibroblasts, J. Exp. Med. 164:180–195.

    Article  PubMed  CAS  Google Scholar 

  83. Klimpel, G. R., Fleischmann, R., and Klimpel, K. D., 1982, Gamma interferon (IFNy) and IFNa/j3 suppress murine myeloid colony formation (CFU-C): Magnitude of suppression is dependent upon level of colony-stimulating factor (CSF), J. Immunol. 129:76–80.

    PubMed  CAS  Google Scholar 

  84. Murphy, M., Loudon, R., Kobayashi, M., and Trinchieri, G., 1986, Gamma interferon and lymphotoxin, released by activated T cells, synergize to inhibit granulocyte-monocyte colony formation, J. Exp. Med. 164:263–279.

    Article  PubMed  CAS  Google Scholar 

  85. Stone-Wolfe, D. S., Yip, Y. K., Kelker, H. C., Le, J., Henriksen-Destafano, D., Rubin, B. Y., Rinderknecht, E., Aggarwal, B. B., and Vilcek, J., 1984, Interrelationship of human interferon-gamma with lymphotoxin and monocyte cytotoxin, J. Exp. Med. 159:828–843.

    Article  Google Scholar 

  86. Wright, S. C., and Bonavida, B., 1982, Studies on the mechanism of natural killer (NK) cell-mediated cytotoxicity (CMC). I. Release of cytotoxic factors specific for NK-sensitive target cells (NKCF) during coculture of NK effector cells with NK target cells, J. Immunol. 129:433–439.

    PubMed  CAS  Google Scholar 

  87. Cuturi, M. C., Murphy, M., Costa-Giomi, M. P., Weinmann, R., Perussia, B., and Trinchieri, G., 1987, Independent regulation of tumor necrosis factor and lymphotoxin production by human peripheral blood lymphocytes, J. Exp. Med. 165:1581–1594.

    Article  PubMed  CAS  Google Scholar 

  88. Broxmeyer, H. E., Williams, D. E., Lu, L., Cooper, S., Anderson, S. L., Beyer, G. S., Hoffman, R., and Rubin, B. Y., 1986, The suppressive influences of human tumor necrosis factors on bone marrow hematopoietic progenitor cells from normal donors and patients with leukemia: Synergism of tumor necrosis factor and interferon-?, J. Immunol. 136:4487–4495.

    PubMed  CAS  Google Scholar 

  89. Murphy, M., Perussia, B., and Trinchieri, B., 1988, Effects of recombinant tumor necrosis factor, lymphotoxin and immune interferon on proliferation and differentiation of enriched hematopoietic precursor cells. Exp. Hematol. 16:131–138.

    PubMed  CAS  Google Scholar 

  90. Ortaldo, J. R., Ransom, J. R., Sayers, T. J., and Herberman, R. B., 1987, Analysis of cytostatic/cytotoxic lymphokines: Relationship of natural killer cytotoxic factor to recom-binant lymphotoxin, recombinant tumor necrosis factor, and leukoregulin, J. Immunol. 137:2857–2863.

    Google Scholar 

  91. Wright, S. C., and Bonavida, B., 1987, Studies on the mechanism of natural killer cell- mediated cytotoxicity. VII. Functional comparison of human natural killer cytotoxic factors with recombinant lymphotoxin and tumor necrosis factor, J. Immunol. 138:1791–1798.

    PubMed  CAS  Google Scholar 

  92. Trinchieri, G., Kobayashi, M., Rosen, M., Loudon, R., Murphy, M., and Perussia, B., 1986, Tumor necrosis factor and lymphotoxin induce differentiation of human myeloid cell lines in synergy with immune interferon. J. Exp. Med. 164:1206–1225.

    Article  PubMed  CAS  Google Scholar 

  93. Spies, T., Morton, C. C., Nedospasou, S. A., Fiers, W., Pious, D., and Strominger, J. L., 1986, Genes for the tumor necrosis factors α and β are linked to the major histocompatibility complex, Proc. Natl. Acad. Sci. USA 83:8699–8702.

    Article  PubMed  CAS  Google Scholar 

  94. Pennica, D., Nedwin, G. E., Hayflick, J. S., Seeburg, P. H., Derynk, R., Palladino, M. A., Kohr, W. J., Aggarwal, B. B., and Goeddel, D. V., 1984, Human tumor necrosis factor: Precursor structure, expression and homology to lymphotoxin, Nature 312:724–729.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Trinchieri, G., Murphy, M., Cuturi, M.C., Anegon, I., Perussia, B. (1989). Control of Hematopoietic Progenitor Cells by Natural Killer Cells. In: Reynolds, C.W., Wiltrout, R.H. (eds) Functions of the Natural Immune System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0715-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0715-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8046-0

  • Online ISBN: 978-1-4613-0715-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics