Role of Natural Effector Cells in the Regulation of Cell-Mediated Immune Responses

  • Arabella B. Tilden
  • Loran T. Clement


The natural immune system is composed of host defense mechanisms that do not appear to require sensitization and lack antigen specificity and MHC restriction. In contrast, the immune system mounts responses to foreign materials that are specific for the antigens encountered and exhibit a memory or enhanced response upon reexposure to the agent. Although the classical immune system and the natural immune system differ fundamentally in these respects, it is now clear that these systems nonetheless interact with or influence one another. For example, a number of lymphokines are produced by T lymphocytes, in the course of an immunological response to antigen, which have significant effects on the functional capabilities of natural effector cells (this is the subject of Chapter 2). Conversely, there is now a large body of evidence that effector cells of the natural immune system exert profound effects on the immunological functions of T and B lymphocytes. The properties of natural effector cells affecting cell-mediated immune responses will be the focus of this chapter.


Effector Cell Acquire Immune Deficiency Syndrome Suppressor Cell Natural Killer Activity Large Granular Lymphocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grossi, C. E., Webb, S. R., Zicca, A., Lydyard, P. M., Moretta, L., Mingari, M. C., and Cooper, M. D., 1978, Morphological and histochemical analyses of two human T-cell subpopulations bearing receptors for IgM or IgG, J. Exp. Med. 147:1405–1417.PubMedCrossRefGoogle Scholar
  2. 2.
    Saksela, E., Timonen, T., Ranki, A., and Hayry, P., 1979, Morphological and functional characterization of isolated effector cells responsible for human natural killer activity to fetal fibroblasts and to cultured cell line targets, Immunol. Rev. 44:71–99.PubMedCrossRefGoogle Scholar
  3. 3.
    Ferrarini, M., Cadoni, A., Franzi, A. T., Ghigliotti, C., Leprini, A., Zicca, A., and Grossi, C. E., 1980, Ultrastructure and cytochemistry of human peripheral blood lymphocytes. Similarities between the cells of the third population and TG lymphocytes, Eur. J. Immunol. 10:562–568.PubMedCrossRefGoogle Scholar
  4. 4.
    Grossi, C. E., Cadoni, A., Zicca, A., Leprini, A., and Ferrarini, M., 1982, Large granular lymphocytes in human peripheral blood. Ultrastructural and cytochemical characterization of the granules, Blood 59:227–284.Google Scholar
  5. 5.
    Armitage, R. J., Linch, D. C., Worman, C. P., and Cawley, J. C., 1982, The morphology and cytochemistry of human T-cell subpopulations defined by monoclonal antibodies and Fc receptors. Br. J. Haematol. 52:605–609.CrossRefGoogle Scholar
  6. 6.
    Abo, T., Cooper, M. D., and Balch, C. M., 1982, Characterization of HNK-1 + (Leu-7) human lymphocytes. I. Two distinct phenotypes of human NK cells with different cytotoxic capability, J. Immunol 129:1752–1757.PubMedGoogle Scholar
  7. 7.
    Landay, A., Gartland, G. L., and Clement, L. T., 1983, Characterization of a phenotypically distinct subpopulation of Leu-2 + cells that suppresses T cell proliferative responses, J. Immunol 131:2757–2761.PubMedGoogle Scholar
  8. 8.
    Landay, A., Clement, L. T., and Grossi, C. E., 1984, Phenotypically and functionally distinct subpopuladons of human lymphocytes with T cell markers also exhibit different cytochemical patterns of staining for lysosomal enzymes, Blood 63:1067–1071.PubMedGoogle Scholar
  9. 9.
    Clement, L. T., Dagg, M. K., and Landay, A., 1984, Characterization of human lymphocyte subpopulations: Alloreactive cytotoxic T-lymphocyte precursor and effector cells are phenotypically distinct from Leu-2+ suppressor cells, J. Clin. Immunol. 4:395–402.PubMedCrossRefGoogle Scholar
  10. 10.
    Timonen, T., and Saksela, E., 1980, Isolation of human natural killer cells by density gradient centrifugation, J. Immunol. Methods 36:285–292.PubMedCrossRefGoogle Scholar
  11. 11.
    Brieva, J. A., Targan, S., and Stevens, R. H., 1984, NK and T cell subsets regulate antibody production by human in vivo antigen-induced lymphoblastoid B cells, J. Immunol. 132:611–615.PubMedGoogle Scholar
  12. 12.
    London, L., Perussia, B., and Trinchieri, G., 1986, Induction of proliferation in vitro of resting human natural killer cells: IL-2 induces into cell cycle most peripheral blood NK cells, but only a minor subset of low density T cells, J. Immunol. 137:3845–3854.PubMedGoogle Scholar
  13. 13.
    Allavena, P., and Ortaldo, J. R., 1984, Characteristics of human NK clones: Target specificity and phenotype, J. Immunol. 132:2363–2369.PubMedGoogle Scholar
  14. 14.
    Lanier, L. L., and Phillips, J. H., 1986, A map of the cell surface antigens expressed on resting and activated human natural killer cells, in: Leukocyte Typing II, Volume 3 (E. L. Reinherz, B. F. Haynes, L. M. Nadler, and I. D. Bernstein, eds.), Springer-Verlag, New York, pp. 157–170.Google Scholar
  15. 15.
    Perussia, B., Fanning, V., and Trinchieri, G., 1983, A human NK and K cell subset shares with cytotoxic T cells expression of the antigen recognized by antibody OKT8, J. Immunol. 131:223–229.PubMedGoogle Scholar
  16. 16.
    Titus, J. A., Sharrow, S. O., and Segal, D. M., 1983, Analysis of Fc(IgG) receptors on human peripheral blood leukocytes by dual flourescence flow microfluoremetry. II. Quantitation of receptors on cells that express the OKM1, OKT3, OKT4, and OKT8 antigens, J. Immunol. 130:1152–1158.PubMedGoogle Scholar
  17. 17.
    Velardi, A., Grossi, C. E., and Cooper, M. D., 1985, A large subpopulation of lymphocytes with T helper phenotype (Leu-3+/T4 +) exhibits the property of binding to NK cell targets and granular lymphocyte morphology, J. Immunol. 134:58–64.PubMedGoogle Scholar
  18. 18.
    Trinchieri, G., and Perussia, B., 1984, Human natural killer cells. Biological and pathological aspects, Lab. Invest. 50:489–513.PubMedGoogle Scholar
  19. 19.
    Rumpold, H., Kraft, D., Obexer, G., Bock, G., and Gebhart, W., 1982, A monoclonal antibody against a surface antigen shared by human large granular lymphocytes and granulocytes, J. Immunol. 129:1458–1463.PubMedGoogle Scholar
  20. 20.
    Ceuppens, J. L., Gualde, N., and Goodwin, J. S., 1982, Phenotypic heterogeneity of the OKM1-positive lymphocyte population: Reactivity of OKM1 monoclonal antibody with a subset of the suppressor/cytotoxic T-cell population, Cell Immunol. 69:150–165.PubMedCrossRefGoogle Scholar
  21. 21.
    Hercend, T., Griffin, J. D., Bensussan, A., Schmidt, R. E., Edson, M. A., Brennan, A., Murray, C., Daley, J. F., Schlossman, S. F., and Ritz, J., 1985, Generation of monoclonal antibodies to a human natural killer clone. Characterization of two natural killer-associated antigens, NKH1A and NKH2, expressed on subsets of large granular lymphocytes, J. Clin. Invest. 75:923–943.CrossRefGoogle Scholar
  22. 22.
    Lanier, L. L., Le, A. M., Cwirla, S., Federspeil, N., and Phillips, J. H., 1986, Antigenic, functional, and molecular genetic studies of human natural killer cells and cytotoxic T lymphocytes not restricted by the major histocompatibility complex, Fed. Proc. 45:2823–2828.PubMedGoogle Scholar
  23. 23.
    Trinchieri, G., Matsumoto-Kobayashi, M., Clark, S. V., Seehra, J., London, L., and Perussia, B., 1984, Response of resting human peripheral blood natural killer cells to in- terleukin-2, J. Exp. Med. 160:1147–1169.PubMedCrossRefGoogle Scholar
  24. 24.
    Dianzani, U., Massaia, M., Pileri, A., Grossi, C. E., and Clement, L. T., 1986, Differential expression of ecto-5’-nucleotidase activity by functionally and phenotypically distinct subpopulations of human Leu-2+/T8+ lymphocytes, J. Immunol. 137:484–489.PubMedGoogle Scholar
  25. 25.
    Yamada, H., Martin, P. J., Bean, M. A., Braun, M. P., Beatty, P. G., Sadamoto, K., and Hansen, J. A., 1985, Monoclonal antibody 9.3 and anti-CDll antibodies define reciprocal subsets of lymphocytes, Eur. J. Immunol. 15:1164–1168.PubMedCrossRefGoogle Scholar
  26. 26.
    Brooks, G. G., Kuribayashi, K., Sale, G. E., and Henny, C. S., 1982, Characterization of five cloned murine cell lines showing high cytolytic activity against YAC-1 cells, J. Immunol. 128:2326–2332.PubMedGoogle Scholar
  27. 27.
    Kasai, M., Yoneda, T., Habu, S., Maruyama, Y., Okumura, K., and Tokunaga, T., 1981, In vivo effect of anti-asialo GM1 antibody on natural killer activity, Nature 291:5813–5816.CrossRefGoogle Scholar
  28. 28.
    28Kedar, E., Ikejiri, B. L., Srendi, B., Bonavida, B., and Herberman, R. B., 1982, Propagation of mouse cytotoxic clones with characteristics of natural killer (NK) cells, Cell. Immunol. 69:305–311.PubMedCrossRefGoogle Scholar
  29. 29.
    Koo, G. C., and Peppard, J. R., 1984, Establishment of monoclonal anti-NK-1 antibody, Hybridoma 3:301–306.PubMedCrossRefGoogle Scholar
  30. 30.
    Bergstresser, P. R., Tigelaar, R. E., Dees, J. H., and Streilein, J. W., 1983, Thy-1 antigen-bearing dendritic cells populate murine epidermis, J. Invest. Dermatol. 81:286–291.PubMedCrossRefGoogle Scholar
  31. 31.
    Tschachler, E., Schuler, G., Hutterer, J., Leibl, H., Wolff, K., and Stuigl, G., 1983, Expression of Thy-1 antigen by murine epidermal cells, J. Invest. Dermatol. 81:282–285.PubMedCrossRefGoogle Scholar
  32. 32.
    Breathnach, S. M., and Katz, S. I., 1984, Thy-1+ dendritic cells in murine epidermis are bone marrow derived, J. Invest. Dermatol. 83:74–82.PubMedCrossRefGoogle Scholar
  33. 33.
    Selby, W. S., Janossy, G., Goldstein, G., and Jewell, D. P., 1981, T lymphocyte subsets in human intestinal mucosa: The distribution and relationships to MHC-determined antigens, Clin. Exp. Immunol. 44:453–460.PubMedGoogle Scholar
  34. 34.
    Cerf-Bensussan, N., Schneeberger, E. E., and Bhan, A. K., 1983, Immunohistologic and immunoelectron microscopic characterization of the mucosal lymphocytes of human small intestine by the use of monoclonal antibodies, J. Immunol. 130:2615–2262.PubMedGoogle Scholar
  35. 35.
    Schrader, J. W., Scollay, R., and Battye, F., 1983, Intramucosal lymphocytes of the gut: Lyt-2 and Thy-1 phenotype of the granulated cells and evidence for the presence of both T cells and mast cell precursors, J. Immunol. 130:558–564.PubMedGoogle Scholar
  36. 36.
    Graeff, A. S., Strober, W., and James, S. P., 1985, Intestinal lamina propria lymphocytes (LPL) in non-human primates lack cells with suppressor-inducer phenotype, Fed. Proc. 44: 564.Google Scholar
  37. 37.
    Hsu, S., Cossman, J., and Jaffee, E. S., 1983, Lymphocyte subsets in normal human lymphoid tissues, Am. J. Clin. Pathol. 7:21–30.Google Scholar
  38. 38.
    Si, L., and Whiteside, T. L., 1983, Tissue distribution of human NK cells studies with anti-Leu-7 monoclonal antibody, J. Immunol. 130:2149–2154.PubMedGoogle Scholar
  39. 39.
    Porwit-Ksiazek, A., Ksiazek, T., and Biberfeld, P., 1983, Leu-7+ (HNK-1+) cells. I. Selective compartmentalization of Leu-7+ cells with different immunophenotypes in lymphatic tissues and blood, Scand. J. Immunol. 18:485–493.PubMedCrossRefGoogle Scholar
  40. 40.
    Velardi, A., Tilden, A. B., Millo, R., and Grossi, C. E., 1986, Isolation and characterization of Leu-7+germinal-center cells with the T helper-cell phenotype and granular lymphocyte morphology, J. Clin. Immunol. 6:205–215.PubMedCrossRefGoogle Scholar
  41. 41.
    Velardi, A., Clement, L. T., and Grossi, C. E., 1985, Quantitative and functional analysis of a human lymphocyte subset with T-helper (Leu-3/T4+) phenotype and NK cell characteristics in patients with malignancies, J. Clin Immunol. 5:329–339.PubMedCrossRefGoogle Scholar
  42. 42.
    Stout, R. D., and Herzenberg, L. A., 1975, The Fc receptor on thymus-derived lymphocytes. I. Detection of a subpopulation of murine T lymphocytes bearing the Fc receptor, J. Exp. Med. 142:611–620.PubMedCrossRefGoogle Scholar
  43. 43.
    Moretta, L., Webb, S. R., Grossi, C. E., Lydyard, P. M., and Cooper, M. D., 1977, Functional analysis of two human T-cell subpopulations: Help and suppression of B-cell responses by T cells bearing receptors for IgM or IgG, J. Exp. Med. 146:184–200.PubMedCrossRefGoogle Scholar
  44. 44.
    Moretta, L., Mingari, M. C., Moretta, A., and Cooper, M. D., 1979, Human T lymphocyte subpopulations: Studies of the mechanism by which T cells bearing Fc receptors for IgG suppress T-dependent B cell differentiation induced by pokeweed mitogen, J. Immunol. 122:984–991.PubMedGoogle Scholar
  45. 45.
    Clement, L. T., Grossi, C. E., and Gartland, G. L., 1984, Morphologic and phenotypic features of the subpopulation of Leu-2+ cells that suppresses B cell differentiation, J. Immunol. 133:2461–2468.PubMedGoogle Scholar
  46. 46.
    Damle, N. K., Mohagheghpour, N., Hansen, J. A., and Engleman, E. G., 1983, Alloantigen-specific cytotoxic and suppressor T lymphocytes are derived from phenotypically distinct precursors, J. Immunol. 131:2296–2303.PubMedGoogle Scholar
  47. 47.
    Damle, N. K., Mohagheghpour, N., and Engleman, E. G., 1984, Soluble antigen-primed inducer T cells activate antigen-specific suppressor T cells in the absence of antigen-pulsed accessory cells. Phenotypic definition of suppressor-inducer and suppressor-effector cells, J. Immunol. 132:644–651.PubMedGoogle Scholar
  48. 48.
    Duwe, A. K., and Singhal, S. K., 1979, The immunoregulatory role of bone marrow. II. Characterization of a suppressor cell inhibiting the in vitro antibody response, Cell. Immunol. 43:372–381.PubMedCrossRefGoogle Scholar
  49. 49.
    Oseroff, A., Okada, S., and Strober, S., 1984, Natural suppressor (NS) cells found in the spleen of neonatal mice and adult mice given total lymphoid irradiation (TLI) express the null surface phenotypes, J. Immunol. 132:101–110.PubMedGoogle Scholar
  50. 50.
    Maier, T., Holda, J. H., and Claman, H. N., 1985, Graft-versus-host reactions (GVHR) across minor murine histocompatibility barriers. II. Development of natural suppressor cell activity, J. Immunol. 135:1644–1651.PubMedGoogle Scholar
  51. 51.
    Maier, T., Holda, J. H., and Claman, H. N., 1986, Natural suppressor (NS) cells. Members of the LGL regulatory family, Immunol. Today 7:312–315.CrossRefGoogle Scholar
  52. 52.
    Jadus, M. R., and Parkman, R., 1986, The selective growth of murine newborn-derived suppressor cells and their probable mode of action, J. Immunol. 136:783–792.PubMedGoogle Scholar
  53. 53.
    Sullivan, S., Bergstresser, P. R., Tigelaar, R. E., and Streilein, J. M., 1986, Induction and regulation of contact hypersensitivity by resident, bone marrow-derived, dendritic epidermal cells: Langerhans cells and Thy-1+ epidermal cells, J. Immunol. 137:2460–2467.PubMedGoogle Scholar
  54. 54.
    Tilden, A. B., Abo, T., and Balch, C. M., 1983, Suppressor cell function of human granular lymphocytes identified by the HNK-1 (Leu-7) monoclonal antibody, J. Immunol. 130:1171–1175.PubMedGoogle Scholar
  55. 55.
    Dorshkind, K., Klimpel, G. R, and Rosse, C., 1980, Natural regulatory cells in murine bone marrow: Inhibition of in vitro proliferative and cytotoxic responses to alloantigens, J. Immunol. 124:2584–2590.PubMedGoogle Scholar
  56. 56.
    Strober, S., Okada, S., and Oseroff, A., 1984, Role of natural suppressor cells in allograft tolerance, Fed. Proc. 43:263–265.PubMedGoogle Scholar
  57. 57.
    Slapsys, R. M., and Clark, D. A., 1982, Active suppression of host-versus-graft reaction in pregnant mice. IV. Local suppressor cells in decidua and uterine blood, J. Reprod. Immunol. 4:355–362.PubMedCrossRefGoogle Scholar
  58. 58.
    Clark, D. A, Slapsys, R. M., Croy, B. A., Krcek, J., and Rossant, J., 1984, Local active suppression by suppressor cells in decidua: A review, Am. J. Reprod. Immunol. 5:78–86.PubMedGoogle Scholar
  59. 59.
    Carvalho, E. M., and Horwitz, D. A., 1980, Characterization of non-T, non-B human blood lymphocyte that mediates the enhancing effects of immune complexes on lymphocyte blastogenesis, J. Immunol. 124:1656–1661.PubMedGoogle Scholar
  60. 60.
    Burlington, D. B., Djeu, J. Y., Wells, M. A., Kiley, S. C., and Quinnan, G. V., 1984, Large granular lymphocytes provide an accessory function in the in vitro development of influenza A virus-specific cytotoxic T cells, J. Immunol. 132:3154–3158.PubMedGoogle Scholar
  61. 61.
    Velardi, A., Mingari, M. C., Moretta, L., and Grossi, C. E., 1986, Functional analysis of cloned germinal center CD4+ cells with natural killer cell-related features. Divergence from typical T helper cells, J Immunol. 137:2808–2813.PubMedGoogle Scholar
  62. 62.
    Abo, W., Bakke, A. C., and Horwitz, D. A, 1985, The regulatory properties of the third mononuclear population on lymphocyte proliferation and immunoglobulin synthesis, Clin. Res. 33: 555A.Google Scholar
  63. 63.
    Thoman, M. L., and Weigle, W. O., 1984, Interleukin-2 induction of antigen-non-specific suppressor cells, Cell. Immunol. 85:215–224.PubMedCrossRefGoogle Scholar
  64. 64.
    Holda, J. H., Maier, T., and Claman, H. N., 1986, Natural suppressor activity in graft- versus-host spleen and normal bone marrow is augmented by IL-2 and interferon-γ, J. Immunol. 137:3538–3543.PubMedGoogle Scholar
  65. 65.
    Kuwano, K., Arai, S., Munakata, T., Tomita, Y., Yoshitake, Y., and Kumagai, K., 1986, Suppressive effect of human natural killer cells on Epstein-Barr virus-induced immunoglobulin synthesis, J. Immunol. 137:1462–1467.PubMedGoogle Scholar
  66. 66.
    Khan, M. M., Marr-Leisy, D., Verlander, M. S., Bristow, M. R., Strober, S., Goodman, M., and Melmon, K. L., 1986, The effects of derivatives of histamine on natural suppressor cells, J. Immunol. 137:308–314.PubMedGoogle Scholar
  67. 67.
    Sansoni, P., Silverman, E. D., Khan, M. M., Melmon, K. L., and Engleman, E. G., 1985, Immunoregulatory T cells in man: Histamine induced suppressor T cells are derived from a Leu-2+ (T8+) subpopulation distinct from that which gives rise to cytotoxic T cells, J. Clin. Invest. 75:650–656.PubMedCrossRefGoogle Scholar
  68. 68.
    Phillips, J. H., and Lanier, L. L., 1986, Lectin-dependent and anti-CD3 induced cytotoxicity are preferentially mediated by peripheral blood cytotoxic T lymphocytes expressing Leu-7 antigen, J. Immunol. 136:1579–1585.PubMedGoogle Scholar
  69. 69.
    Rowley, D. A., and Shah, P. D., 1986, The immunological meaning of Thy-1-negative NK cells, Immunol. Today 7:196–199.CrossRefGoogle Scholar
  70. 70.
    Clark, D. A., Chaput, A., Walker, C., and Rosenthal, K., 1985, Active suppression of host-versus-graft reaction in pregnant mice. VI. Soluble suppressor activity obtained from decidua blocks the response to IL-2, J. Immunol. 134:1659–1666.PubMedGoogle Scholar
  71. 71.
    Sayers, T. J., Ransom, J. H., Denn, A. C., Herberman, R. B., and Ortaldo, J. R., 1986, Analysis of a cytostatic lymphokine produced by incubation of lymphocytes with tumor cells: Relationship to leukoregulin and distinction from recombinant lymphotoxin, recombinant tumor necrosis factor,and natural killer cytotoxic factor, J. Immunol. 137:385–390.PubMedGoogle Scholar
  72. 72.
    Gebel, H. M., Kaizer, H., and Landay, A. L., 1985, Leu-2+ 15+ T cells mediate suppression of IL-2 production in bone marrow recipients, Fed. Proc. 44: 1303.Google Scholar
  73. 73.
    Scala, G., Allavena, P., Djeu, J. D., Kasahara, T., Ortaldo, J. R., Herberman, R. B., and Oppenheim, J. J., 1984, Human large granular lymphocytes are potent producers of interleukin-1, Nature 309:56–59.PubMedCrossRefGoogle Scholar
  74. 74.
    Kasahara, T., Djeu, J. D., Dougherty, S. F., and Oppenheim, J. J., 1983, Capacity of human large granular lymphocytes (LGL) to produce multiple lymphokines: Interleukin-2, interferon, and colony-stimulating factor, J. Immunol. 131:2379–2386.PubMedGoogle Scholar
  75. 75.
    Suzuki, R., Suzuki, S., Ebina, N., and Kumagai, K., 1985, Suppression of alloimmune cytotoxic T lymphocyte (CTL) generation by depletion of NK cells and restoration by interferon and/or interleukin-2, J. Immunol. 134:2139–2148.PubMedGoogle Scholar
  76. 76.
    Gomez, J., Pohajdak, B., O’Neill, S., Wilkins, J., and Greenberg, A. H., 1985, Activation of rat and human alveolar macrophage intracellular microbicidal activity by a preformed LGL cytokine, J. Immunol. 135:1194–1200.PubMedGoogle Scholar
  77. 77.
    Linker-Iraeli, M., Bakke, A. C., Quismorio F. P. Jr., and Horwitz, D. A., 1985, Correction of interleukin-2 production in patients with systemic lupus erythematosis by removal of spontaneously activated suppressor cells, J. Clin. Invest. 75:762–768.CrossRefGoogle Scholar
  78. 78.
    Egan, M. L., Mendelsohn, S. L., Abo, T., and Balch, C. M., 1983, Natural killer cells in systemic lupus erythematosus. Abnormal numbers and functional immaturity of HNK-1+ cells, Arth. Rheum. 26:623–629.CrossRefGoogle Scholar
  79. 79.
    Lewis, D. E., Puck, J. M., Babcock, G. F., and Rich, R. R, 1985, Disproportionate expansion of a minor T cell subset in patients with lymphoadenopathy syndrome and acquired immunodeficiency syndrome, J. Infect. Dis. 151:555–559.PubMedCrossRefGoogle Scholar
  80. 80.
    Plaeger-Marshall, S., Spina, C. A., Giorgi, J. V., Mitsuyasu, R., Wolfe, P., Gottleib, M., and Beall, G., 1987, Alterations in cytotoxic and phenotypic subsets of natural killer cells in acquired immune deficiency syndrome (AIDS), J. Clin. Immunol. 7:16–23.PubMedCrossRefGoogle Scholar
  81. 81.
    Maher, P., O’Toole, C. M., Wreghitt, T. G., Spiegelhalter, D. J., and English, T. A. H., 1985, Cytomegalovirus infection in cardiac transplant recipients associated with chronic T cell subset ratio inversion with expansion of a Leu-7+ Ts-c+ subset, Clin. Exp. Immunol. 62:515–524.PubMedGoogle Scholar
  82. 82.
    Worsch, A. M., Gratama, J. W., Middeldorp, J. M., Nissen, C., Gratwohl, A., Speck, B., Jansen, J., D–Amaro, J., The T. H., and DeGast, G. C., 1985, The effect of cytomegalovirus infection on T lymphocytes after allogeneic bone marrow transplantation, Clin. Exp. Immunol. 62:278–287.Google Scholar
  83. 83.
    Ault, K. A., Autin, J. H., Ginsburg, D., Orkin, S. H., Rappeport, J. M., Keohan, M. L., Martin, P., and Smith, B. R., 1985, The phenotype of recovering lymphoid cell populations following marrow transplantation, J. Exp. Med. 161:1483–1502.PubMedCrossRefGoogle Scholar
  84. 84.
    Legendre, C. M., Guttman, R. D., Hou, S. K., and Jean, R., 1985, Two-color immuno-flourescent and flow cytometry analysis of lymphocytes in long-term renal allotransplant recipients: Identification of a major Leu-7+/Leu-3+ subpopulation, J. Immunol. 135:1061–1066.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Arabella B. Tilden
    • 1
  • Loran T. Clement
    • 2
  1. 1.Department of Medicine, Division of Hematology and OncologyUniversity of Alabama at Birmingham, and Veterans Administration Medical CenterBirminghamUSA
  2. 2.Department of PediatricsUniversity of California at Los Angeles School of MedicineLos AngelesUSA

Personalised recommendations