Skip to main content

Relativistic Atomic Structure Calculations

  • Chapter

Abstract

This review surveys methods for computing the electronic structures of atoms based on the use of relativistic quantum mechanics. The main mathematical formulas are presented with some account of the underlying physical assumptions. The way in which these formulas are translated into practical computer codes is briefly discussed as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. R. Hartree, The Calculation of Atomic Structures, John Wiley, New York (1957).

    Google Scholar 

  2. P. Grant, Relativistic calculation of atomic structure, Adv. Phys. 19, 747–811 (1970).

    CAS  Google Scholar 

  3. P. Pyykkö, Relativistic Theory of Atoms and Molecules, (Lecture Notes in Chemistry, No. 41), Springer-Verlag, New York (1986).

    Google Scholar 

  4. P. A. M. Dirac, The quantum theory of the electron, Proc. R. Soc. London Ser. A 117, 610–624 (1928)

    Google Scholar 

  5. P. A. M. Dirac, The quantum theory of the electron. Part II. Proc. R. Soc. London Ser. A 118, 351–361 (1928).

    CAS  Google Scholar 

  6. W. H. Furry, On bound states and scattering in positron theory, Phys. Rev. 81, 115–124 (1951).

    Google Scholar 

  7. S. S. Schweber, Introduction to Relativistic Quantum Field Theory, Section 15g, Harper and Row, New York (1964).

    Google Scholar 

  8. G. E. Brown and D. G. Ravenhall, On the interaction of two electrons, Proc. R. Soc. London Ser. A 208, 552–559 (1951).

    CAS  Google Scholar 

  9. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two-Electron Systems, Section 38, Springer-Verlag, Berlin (1957).

    Google Scholar 

  10. J. Sucher, Foundations of the relativistic theory of many-electron atoms, Phys. Rev. A 22, 348–362 (1980).

    CAS  Google Scholar 

  11. J. Sucher, in: Atomic Theory Workshop on Relativistic and QED Effects in Heavy Atoms (AIP Conference Proceedings, No. 136) (H. P. Kelly and Y.-K. Kim, eds.), pp. 1–16, American Institute of Physics, New York (1985).

    Google Scholar 

  12. P. Grant and H. M. Quiney, Foundations of the relativistic theory of atomic and molecular structure, Adv. Atom. Molec. Phys. 23, 37–86 (1988).

    Google Scholar 

  13. G. E. Brown, The relativistic atomic and many-body problem, Phys. Scr. 36, 71–76 (1987).

    CAS  Google Scholar 

  14. J. R. Sapirstein, Quantum electrodynamics of many-electron atoms, Phys. Scr. 36, 801–808 (1987).

    CAS  Google Scholar 

  15. B. Swirles, The relativistic self-consistent field, Proc. R. Soc. London Ser. A 152, 625–649 (1935).

    Google Scholar 

  16. P. Grant, Relativistic self-consistent fields, Proc. R. Soc. London Ser. A 262, 555–576 (1961).

    Google Scholar 

  17. E. U. Condon and G. H. Shortley, The theory of Atomic Spectra Cambridge University Press, London (1935).

    Google Scholar 

  18. R. D. Cowan, The Theory of Atomic Structure and Spectra, University of California Press, Berkeley, California (1981).

    Google Scholar 

  19. W. Pauli, Relation between the closing in of electron-groups and the structure of complexes in the spectrum, Z. Phys. 31, 765–783 (1925).

    CAS  Google Scholar 

  20. W. R. Johnson and K. T. Cheng, Quantum defects for highly stripped ions. J. Phys. B 12, 863–879 (1979).

    CAS  Google Scholar 

  21. C. M. Lee and W. R. Johnson, Scattering and spectroscopy: Relativistic multiconfigurational quantum defect theory. Phys. Rev. A 22, 979–988 (1980).

    CAS  Google Scholar 

  22. P. Grant, B. J. McKenzie, P. H. Norrington, D. F. Mayers, and N. C. Pyper, An atomic multiconfiguration Dirac-Fock package. Comput. Phys. Commun. 21, 207–232 (1980).

    CAS  Google Scholar 

  23. J. C. Stewart and M. Rotenberg, Wavefunctions and transition probabilities in scaled Thomas-Fermi potentials, Phys. Rev. 140, A1508-A1519 (1965).

    Google Scholar 

  24. L. Armstrong, Jr. and S. Feneuille, Relativistic effects in the many-electron atom, Adv. At. Mol. Phys. 10, 1–52 (1974).

    CAS  Google Scholar 

  25. W. Eissner, M. Jones, and H. Nussbaumer, Techniques for the calculation of atomic structures and radiative data including relativistic corrections, Comput. Phys. Commun. 8, 270–306 (1974).

    CAS  Google Scholar 

  26. M. Klapisch, A program for atomic wavefunction computations by the parametric potential method, Comput. Phys. Commun. 2, 239–260 (1971).

    Google Scholar 

  27. E. Koenig, Fonctions d’onde atomiques relativistes dans l’approximation du champ central. Application au Cs I. Physica 62, 393–408 (1972).

    CAS  Google Scholar 

  28. M. Klapisch, J. L. Schwob, B. S. Fraenkel, and J. Oreg, The 1s-3p K b -X-ray spectrum of highly ionized iron, J. Opt. Soc. Am. 67, 148–155 (1977).

    CAS  Google Scholar 

  29. E. Luc-Koenig, Doublet inversions in alkali-metal spectra: Relativistic and correlation effects, Phys. Rev. A 13, 2114–2122 (1976).

    CAS  Google Scholar 

  30. E. P. Vidolova-Angelova, L. N. Ivanov, and V. S. Letokhov, Calculation of highly excited Rydberg states of ytterbium atoms. J. Opt. Soc. Am. 71, 699–704 (1981).

    CAS  Google Scholar 

  31. E. P. Vidolova-Angelova, L. N. Ivanov, and V. S. Letokhov, Application of model potential method in calculating Rydberg states of rare earth elements Tm, Yb, Lu, and their ions, J. Phys. B 15, 981–991 (1982).

    CAS  Google Scholar 

  32. E. P. Vidolova-Angelova, L. N. Ivanoc, E. P. Ivanova, and D. A. Angelov, Relativistic perturbation theory method for investigating the radiation decay of highly excited many electron atomic states. Application to the Tm atoms, J. Phys. B 19, 2053–2069 (1986).

    CAS  Google Scholar 

  33. J. Migdalek, W. E. Baylis, Relativistic oscillator strengths for the 6s 2 1 S-6s6p 3 P, l P transitions in neutral mercury. A new approach to the correlation problem, J. Phys. B 17, L459-L464 (1984).

    CAS  Google Scholar 

  34. B. Swirles, The relativistic self-consistent field, Proc. R. Soc. London Ser. A 152, 625–649 (1935).

    Google Scholar 

  35. T. Koopmans, Über die Zuordnung von Wellenfunktionen und eigenwerten zu den einzelnen Elektronen eines Atoms, Physica 1, 104–113 (1933).

    CAS  Google Scholar 

  36. Y. K. Kim, Relativistic self-consistent field theory for closed-shell atoms. Phys. Rev. 154, 17–39 (1967).

    CAS  Google Scholar 

  37. F. Rosicky and F. Mark, Relativistic virial theorem by the elimination method and nonrelativistic approximations to this theorem, J. Phys. B 8, 2581–2587 (1975).

    Google Scholar 

  38. D. F. Mayers, Relativistic atomic wave functions for open shells, J. Phys. (Paris) 31S, C4, 221–224 (1970).

    Google Scholar 

  39. J. P. Desclaux, C. Moser, and G. Verhaegen, Relativistic energies of excited states of atoms and ions of the second period. J. Phys. B 4, 296–310 (1971).

    CAS  Google Scholar 

  40. I. Lindgren and A. Rosén, Relativistic self-consistent fields with applications to atomic hyperfine interaction, Pari. Case Stud. At. Phys. 4, 93–149 (1974).

    CAS  Google Scholar 

  41. F. P. Larkins, Relativistic LS multiplet energies for atoms and ions, J. Phys. B 9, 37–46 (1976).

    CAS  Google Scholar 

  42. K. G. Dyall, A comment on the calculation of atomic energies in LS coupling using relativistic radial integrals, J. Phys. B 18, L175-L177 (1985).

    CAS  Google Scholar 

  43. P. Grant, D. F. Mayers, and N. C. Pyper, Studies in multiconfiguration Dirac-Fock theory. I. The low-lying spectrum of Hf III, J. Phys. B 9, 2777–2796 (1976).

    CAS  Google Scholar 

  44. O. Goscinski, G. Howat, and T. Åberg, On transition energies and probabilities by a transition operator method, J. Phys. B 8, 11–19 (1975).

    CAS  Google Scholar 

  45. J. Hata and I. P. Grant, Comments on the relativistic two -body interaction in atoms, J. Phys. B 17, L107-L113 (1984).

    CAS  Google Scholar 

  46. G. Breit, The effect of retardation on the interaction of two electrons, Phys. Rev. 34, 553–573 (1929).

    CAS  Google Scholar 

  47. G. Breit, The fine structure of He as a test of the spin interaction of two electrons, Phys. Rev. 36, 383–397 (1930).

    CAS  Google Scholar 

  48. B. J. McKenzie, I. P. Grant, and P. H. Norrington, A program to calculate transverse Breit and QED corrections to energy levels in a MCDF environment, Comput. Phys. Commun. 21, 233–246 (1980).

    Google Scholar 

  49. H. M. Quiney, I. P. Grant, and S. Wilson, The Dirac equation in the algebraic approximation. V. Self-consistent field studies including the Breit interaction, J. Phys. B 20, 1413–1422 (1987).

    CAS  Google Scholar 

  50. J. Hata and I. P. Grant, Fine structure of the 1s2s2p 4 and 1s2p 2 4 P terms of the lithium isoelectronic sequence and wavelengths of the transitions between them, J. Phys. B 16, 915–926 (1983).

    CAS  Google Scholar 

  51. J. Hata and I. P. Grant, 1s2s2p 2 5 p-1s2p 3 5 transitions in the beryllium isoelectronie sequence, J. Phys. B 16, L125-L128 (1983).

    CAS  Google Scholar 

  52. D. H. Shun, unpublished D.Phil, thesis, Oxford University (1977).

    Google Scholar 

  53. P. Grant, Many electron effects in the theory of nuclear volume isotope shift, Phys. Scr. 21, 443–447 (1980).

    CAS  Google Scholar 

  54. S. Bouazza, Y. Guern, and J. Bauche, Isotope shift and hyperflne structure in low-lying levels of Pb II, J. Phys. B 19, 1881–1890 (1986).

    CAS  Google Scholar 

  55. I. Lindgren and A. Rosén, Relativistic self-consistent fields with applications to atomic hyperfine interactions. Part II, Case Stud. At. Phys. 4, 150–196 (1974).

    Google Scholar 

  56. I. Lindgren and A. Rosén, Relativistic self-consistent fields with applications to atomic hyperfine interactions. Part III, Case Stud. At. Phys. 4, 197–298 (1974).

    CAS  Google Scholar 

  57. D. S. Hughes and C. Eckart, Effect of the nucleus on the spectra of Li I and Li II, Phys. Rev. 36, 694–698 (1930).

    CAS  Google Scholar 

  58. P. Stone, Nuclear and relativistic effects in atomic spectra, Proc. Phys. Soc. (London) 77, 786–796 (1961).

    CAS  Google Scholar 

  59. H. Grotch and D. R. Yennie, Effective potential model for calculating nuclear corrections to the energy levels of hydrogen, Rev. Mod. Phys 41, 350–374 (1969).

    CAS  Google Scholar 

  60. G. W. Erickson and D. R. Yennie, Radiative level shifts, I. Formulation and lowest order Lamb shift. Ann. Phys. (NY) 35, 271–313 (1981).

    Google Scholar 

  61. E. A. Uehling, Polarization effects in the positron theory, Phys. Rev. 48, 55–63 (1935).

    CAS  Google Scholar 

  62. E. H. Wichman and N. M. Kroll, Vacuum polarization in a strong Coulomb field, Phys. Rev. 101, 843–859 (1956).

    Google Scholar 

  63. L. W. Fullerton and G. A. Rinker, Accurate and efficient methods for the evaluation of vacuum-polarization potentials of order Za and Za2, Phys. Rev. A 13, 1283–1287 (1976).

    Google Scholar 

  64. O. Barut and Xu Bo-Wei, Derivation of static Pauli-spin-orbit and spin-spin potentials from field theory, Phys. Scr. 26, 129–131 (1982).

    CAS  Google Scholar 

  65. J. Hata, D. L. Cooper, and I. P. Grant, Inclusion of the electron anomaly in effective Hamiltonians for perturbative (Breit-Pauli) and non-perturbative approaches to electron fine structure, J. Phys. B 18, 1907–1917 (1985).

    CAS  Google Scholar 

  66. G. E. Brown, J. S. Langer, and G. W. Schaefer, Lamb shift of a tightly bound electron, I. Method, Proc. R. Soc. London Ser. A 251, 92–104 (1959).

    CAS  Google Scholar 

  67. G. E. Brown and D. F. Mayers, Lamb shift of a tightly bound electron, II. Calculation for the K-electron in mercury, Proc. R. Soc. London Ser. A 251, 105–109 (1959).

    CAS  Google Scholar 

  68. M. Desiderio and W. R. Johnson, Lamb shift and binding energies of K-electrons in heavy atoms, Phys. Rev. A 3, 1267–1275 (1971).

    Google Scholar 

  69. P. J. Möhr, Self-energy radiative corrections in hydrogen-like systems, Ann. Phys. (NY) 88, 26–51 (1974).

    Google Scholar 

  70. K. T. Cheng and W. R. Johnson, Self-energy corrections to the K-electron binding in heavy and superheavy atoms, Phys. Rev. A 14, 1943–1948 (1976).

    CAS  Google Scholar 

  71. P. J. Möhr, Self-energy of the n = 2 states in a strong Coulomb field, Phys. Rev. A 26, 2338–2354 (1982).

    Google Scholar 

  72. G. Soff, P. Schlüter, B. Müller, and W. Greiner, Self-energy of electrons in critical fields, Phys. Rev. Lett. 48, 1465–1468 (1982).

    CAS  Google Scholar 

  73. W. R. Johnson and G. Soff, The Lamb shift in hydrogen-like atoms, 1 ≤ Z ≤ 110, At. Data Nucl. Data Tables 33, 405–446 (1985).

    CAS  Google Scholar 

  74. H. M. Quiney, Chapter 5 of this volume.

    Google Scholar 

  75. S. Wilson, Electron Correlation in Molecules, Chapter 4, Clarendon Press, Oxford (1984).

    Google Scholar 

  76. R. P. Feynman, The theory of positrons, Phys. Rev. 76, 749–759 (1949).

    CAS  Google Scholar 

  77. R. P. Feynman, Space-time approach to quantum electrodynamics, Phys. Rev. 76, 769–789 (1949).

    Google Scholar 

  78. F. J. Dyson, The radiation theories of Tomonaga, Schwinger and Feynman, Phys. Rev. 75, 486–502 (1949).

    Google Scholar 

  79. F. J. Dyson, The S-matrix in quantum electrodynamics, Phys. Rev. 75, 1736–1756 (1949).

    Google Scholar 

  80. G. C. Wick, The evaluation of the collision matrix, Phys. Rev. 80, 268–272 (1950).

    Google Scholar 

  81. N. M. Hugenholtz, Perturbation theory of large quantum systems, Physica 23, 481–532 (1957).

    CAS  Google Scholar 

  82. J. Goldstone, Derivation of the Brueckner many-body theory, Proc. R. Soc. London Ser.A 239, 267–279 (1961).

    Google Scholar 

  83. P. Grant and H. M. Quiney, work in progress.

    Google Scholar 

  84. P. Yutsis, I. B. Levinson, and V. V. Vanagas, Mathematical apparatus of the theory of angular momentum. Israel Program for Scientific Translation, Jerusalem (1962).

    Google Scholar 

  85. R. Judd, Operator Techniques in Atomic Spectroscopy, McGraw-Hill, New York (1963).

    Google Scholar 

  86. R. Judd, Second Quantization and Atomic Spectroscopy, The Johns Hopkins Press, Baltimore (1967).

    Google Scholar 

  87. M. Brink and G. R. Satchler, Angular Momentum (2nd edition), Clarendon Press, Oxford (1968).

    Google Scholar 

  88. E. El Baz and B. Castel, Graphical Methods of Spin Algebras in Atomic, Nuclear and Particle Physics. Marcel Dekker, New York (1972).

    Google Scholar 

  89. I. Lindgren and J. Morrison, Atomic Many-Body Theory, Springer-Verlag, Berlin (1982).

    Google Scholar 

  90. P. Grant, Gauge invariance and relativistic radiative transitions, J. Phys. B 7, 1458–1475 (1974).

    CAS  Google Scholar 

  91. P. Grant and N. C. Pyper, Breit interaction in multi-configuration relativistic atomic calculations, J. Phys. B 9, 761–774 (1976).

    Google Scholar 

  92. P. Grant and B. J. McKenzie, The transverse electron-electron interaction in atomic structure calculations, J. Phys. B 13, 2671–2681 (1980).

    CAS  Google Scholar 

  93. J. A. Gaunt, The triplets of helium, Proc. R. Soc. London Ser. A 122, 513–532 (1929).

    CAS  Google Scholar 

  94. K. Helmers, Symplectic invariants and Flowers’s classification of shell model states, Nucl. Phys. 23, 594–561 (1961).

    CAS  Google Scholar 

  95. B. H. Flowers and S. Szpikowski, Generalized quasispin formalism, Proc. Phys. Soc. (London) 84, 193–199 (1964).

    Google Scholar 

  96. B. H. Flowers and S. Szpikowski, Quasispin in LS coupling, Proc. Phys. Soc. (London) 84, 673–680 (1964).

    Google Scholar 

  97. R. D. Lawson and M. H. Macfarlane, The quasispin formalism and the dependence of nuclear matrix elements on particle number. Nucl. Phys. 6, 80–96 (1965).

    Google Scholar 

  98. G. Racah, Theory of complex spectra, III, Phys. Rev. 63, 367–382 (1943).

    CAS  Google Scholar 

  99. G. Racah, Theory of complex spectra, IV Phys. Rev. 76, 1353–1365 (1949).

    Google Scholar 

  100. E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York (1959).

    Google Scholar 

  101. N. C. Pyper, I. P. Grant, and N. Beatham, A new program for computing matrix elements of one-particle operators in jj-coupling, Computer Phys. Commun. 17, 387–400 (1978).

    Google Scholar 

  102. K. N. Huang, Graphical evaluation of relativistic matrix elements, Rev. Mod. Phys. 51, 215–236 (1979).

    Google Scholar 

  103. P. Grant, A general program to calculate angular momentum coefficients in relativistic atomic structure, Computer Phys. Commun. 5, 263–282 (1973).

    Google Scholar 

  104. P. Grant, A general program to calculate angular momentum coefficients in relativistic atomic structure—Revised version. Computer Phys. Commun. 11, 397–405 (1976).

    CAS  Google Scholar 

  105. W. R. Johnson, C. D. Lin, K. T. Cheng, and C. M. Lee, Relativistic random-phase approximation, Phys. Scr. 21, 409–422 (1980).

    CAS  Google Scholar 

  106. J. P. Desclaux, A multiconfiguration relativistic Dirac-Fock program, Computer Phys. Commun. 9, 31–45 (1975).

    Google Scholar 

  107. N. Beatham, I. P. Grant, B. J. McKenzie, and N. C. Pyper, MCBP—A program to calculate angular coefficients of the Breit interaction between electrons in the low energy limit, Computer Phys. Commun. 18, 245–260 (1979).

    CAS  Google Scholar 

  108. P. Grant, CFPJJ—Fractional parentage coefficients for equivalent electrons in jj coupling, Computer Phys. Commun. 4, 377–381 (1972).

    Google Scholar 

  109. P. Grant, CFPJJ—Fractional parentage coefficients for equivalent electrons in jj coupling. Erratum, Computer Phys. Commun. 14, 311 (1978).

    Google Scholar 

  110. P. G. Burke, A program to calculate a general recoupling coefficient, Computer Phys. Commun. 1, 241–250 (1970).

    Google Scholar 

  111. N. S. Scott and A. Hibbert, A more efficient version of the WEIGTHS and NJSYM packages, Computer Phys. Commun. 28, 198–200 (1982).

    Google Scholar 

  112. Bar-Shalom and M. Klapisch, NJGRAF—An efficient program for calculation of general recoupling coefficients by graphical analysis compatible with NJSYM, Computer Phys. Commun. (in press).

    Google Scholar 

  113. K. G. Dyall, TRANSFORM—A program to calculate tranformations between various jj and LS coupling schemes, Computer Phys. Commun. 39, 141–152 (1986).

    CAS  Google Scholar 

  114. C. Froese Fischer, The Hartree-Fock Method for Atoms, John Wiley, New York (1977).

    Google Scholar 

  115. C. Froese Fischer, Self-consistent field (SCF) and multiconfiguration (MC) Hartree-Fock (HF) methods in atomic calculations: numerical approaches, Computer Phys. Rep. 3, 273–326 (1986).

    Google Scholar 

  116. J. P. Desclaux, D. F. Mayers, and F. O’Brien, Relativistic atomic wave functions, J. Phys. B 4, 631–642 (1971).

    CAS  Google Scholar 

  117. P. Grant, Many-electron effects in the theory of nuclear volume isotope shift, Phys. Scr. 21, 443–447 (1980).

    CAS  Google Scholar 

  118. A. Hibbert, CIV3—A general program to calculate CI wavefunctions and electric-dipole oscillator strengths, Computer Phys. Commun. 9, 141–172 (1975).

    Google Scholar 

  119. K. G. Dyall, I. P. Grant, E. P. Plummer, C. T. Johnson, and F. A. Parpia, GRASP— A general-purpose relativistic atomic structure program, Computer Phys. Commun. (in preparation).

    Google Scholar 

  120. R. D. Cowan, B. C. Fawcett, I. P. Grant, and S. J. Rose, Classic multiconfiguration Dirac-Fock and Hartree-Fock Relativistic methods integrated into a program package for the RAL-IBM mainframe with automatic comparative output. SERC Rutherford Appleton Laboratory Report, RAL-85–098 (1985).

    Google Scholar 

  121. G. E. Bromage, The Cowan-Zealot suite of computer programmes for atomic structure. SERC Appleton Laboratory Report, AL-R13 (1978).

    Google Scholar 

  122. B. C. Fawcett, The atomic structure Hartree-Fock Relativistic and Hartree-XR Program Package translated for IBM from the Cowan-CDC version, plus the Zeeman parameter optimization routines. SERC Rutherford Appleton Laboratory Report RL-83–030 (1984, revised).

    Google Scholar 

  123. M. Blume and R. E. Watson, Theory of spin-orbit coupling in atoms. I.Derivation of the spin-orbit coupling constant, Proc. R. Soc. London Ser. A 270, 127–143 (1962).

    CAS  Google Scholar 

  124. M. Blume and R. E. Watson, Theory of spin-orbit coupling in atoms. II. Comparison of theory with experiment, Proc. R. Soc. London Ser. A 271, 565–578 (1963).

    CAS  Google Scholar 

  125. B. C. Fawcett, Calculated oscillator strengths, wavelengths and energy levels for allowed 3–3 and 3–4 transitions for Fe XV with isoelectronic comparisons between Dirac-Fock and Hartree-Fock, Phys. Scr. 34, 331–336 (1986).

    CAS  Google Scholar 

  126. B. C. Fawcett, Calculated wavelengths and oscillator strengths of n = 2–2 and 2–3 transitions for ions in the oxygen-like isoelectronic sequence between Mg V and Ni XXI, At. Data Nucl. Data Tables 34, 215–260 (1986).

    CAS  Google Scholar 

  127. B. C. Fawcett, Calculated wavelengths, oscillator strengths and energy levels for allowed 3–3 and 3–4 transitions for ions in the S-like isoelectronic sequence between S I and Ni XIII, At. Data Nucl. Data Tables 35, 185–202 (1986).

    CAS  Google Scholar 

  128. B. C. Fawcett, Calculated wavelengths, oscillator strengths and energy levels for allowed 3–3 and 3–4 transitions for ions in the P-like isoelectronic sequence between P I and Ni XIV, At. Data and Nucl. Data Tables 35, 203–222 (1986).

    CAS  Google Scholar 

  129. B. C. Fawcett, Calculated wavelengths oscillator strengths and energy levels for allowed 3–3 transitions for ions in the Si-like isoelectronic sequence between Si I and Ni XV, At. Data Nucl Data Tables 36, 129–149 (1987).

    CAS  Google Scholar 

  130. B. C. Fawcett, Calculated wavelengths, oscillator strengths and energy levels for allowed 3–3 transitions for ions in the Cl-like isoelectronic sequence between Ar II and Ni XII, At. Data Nucl Data Tables 36, 151–166 (1987).

    CAS  Google Scholar 

  131. G. G. Hall, The molecular theory of chemical valency, VIII. A method of calculating ionization potentials, Proc. R. Soc. London Ser. A 205, 541–552 (1951).

    CAS  Google Scholar 

  132. C. C. J. Roothaan, New developments in molecular orbital theory, Rev. Mod. Phys. 23, 69–89 (1951).

    CAS  Google Scholar 

  133. T. Kagawa, Relativistic Hartree-Fock-Roothaan theory for open-shell atoms, Phys. Rev. A 12, 2245–2256 (1975).

    CAS  Google Scholar 

  134. T. Kagawa, Multiconfiguration relativistic Hartree-Fock-Roothaan theory for atomic systems, Phys. Rev. A 22, 2340–2354 (1980).

    CAS  Google Scholar 

  135. O. Gorceix, P. Indelicato, and J. P. Desclaux, Multiconfiguration Dirac-Fock studies of two-electron ions: I. Electron-electron interaction, J. Phys. B 20, 639–649 (1987).

    CAS  Google Scholar 

  136. P. Indelicato, O. Gorceix, and J. P. Desclaux, Multiconfiguration Dirac-Fock studies of two-electron ions: II. Radiative corrections and comparison with experiment, J. Phys. B 20, 651–663 (1987).

    CAS  Google Scholar 

  137. J. Hata and I. P. Grant, Tests of QED for two-electron ions. II. 23 S-23 P energies, J. Phys. B 16, 523–536 (1983).

    CAS  Google Scholar 

  138. B. C. Fawcett, C. Jordan, J. R. Lemen, and K. J. H. Phillips, New spectral line identifications in high temperature flares, SERC Rutherford Appleton Laboratory Report, RAL-86–094 (1986).

    Google Scholar 

  139. K. G. Dyall and I. P. Grant, The K ß emission spectrum of argon; A theoretical account, J. Phys. B 17, 1281–1300 (1984).

    CAS  Google Scholar 

  140. S. Bashkin and J. O. Stoner, Atomic Energy Levels and Grotrian Diagrams, Vol. 2, North-Holland, Amsterdam (1978).

    Google Scholar 

  141. K. G. Dyall, Shake theory predictions of excited-state populations following 1s ionization in argon, J. Phys. B 16, 3137–3147 (1983).

    CAS  Google Scholar 

  142. J. C. Slater, A simplification of the Hartree-Fock method, Phys. Rev. 81, 385–390 (1951).

    CAS  Google Scholar 

  143. P. C. Desmukh, B. R. Tambe and S. T. Manson, Relativistic effects in the photo-ionization of heavy atoms: Cooper minima. Aust. J. Phys. 39, 679–685 (1986).

    Google Scholar 

  144. M. H. Chen and B. Crasemann, Auger and radiative decay rates of 1s vacancy states in the boron isoelectronic sequence. Effects of relativity and configuration interaction (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Grant, I.P. (1988). Relativistic Atomic Structure Calculations. In: Wilson, S. (eds) Methods in Computational Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0711-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0711-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8044-6

  • Online ISBN: 978-1-4613-0711-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics