Advertisement

Singlet Oxygen and Electron Transfer Induced Oxygenation Pathways in Reactions Photosensitized by Dicyanoanthracene and Hydroxy-Anthraquinones

  • Klaus Gollnick
  • Albert Schnatterer
  • Gerald Utschick
  • Uwe Paulmann
  • Stephan Held

Abstract

Some time ago, Schenck and Gollnick (1958) observed that ascaridole formation by hydroxy-anthraquinone-photosensitized oxygenation of α - terpinene, now recognized as a (4+2)-cycloaddition of singlet oxygen to the cyclic 1,3-diene system, was dependent on the number as well as on the positions of the OH groups in the anthraquinone moiety. Since naturally occurring quinones carrying hydroxy groups such as hypericin (for a recent review, see Duran and Song, 1986), cercosporin and dohistromin (Youngman and Elstner, 1984) are of importance in many biochemical processes, for example in photodynamic actions, it appears to be interesting to study the capability of model compounds such as anthraquinone and a series of its hydroxy derivatives as sensitizers of Type II (singlet oxygen) and Type I ((1) H-atom induced, and (2) electron transfer induced) photooxygenation reactions. Since the methods available for distinguishing between singlet oxygen and electron transfer induced oxygenation reactions have their severe drawbacks (Davidson et al., 1987), our approach is to apply simple, chemically well-defined systems which may be able to give a clear-cut answer with regard to the mechanisms involved. These results may be useful to photobiologists for their studies on phtooxygenations that proceed in the rather complicated biological systems. Although our only recently commenced studies on Type I and Type II photooxygenations sensitized by hydroxy-anthraquinones are far from being complete, first conclusions may be drawn from the following results.

Keywords

Electron Transfer Singlet Oxygen Rose Bengal Photodynamic Action Ketone Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Barton, D.H.R., Leclerc, G., Magnus, P.D., and Menzies, I.D., 1972, An unusual synthesis of ergosterol acetate peroxide,J. Chem. Soc., Chem. Comm., 447.Google Scholar
  2. Davidson, R.S., Goodwin, D., and Pratt, J., 1987, Problems associated with distinguishing between singlet oxygen and electron transfer photooxygenation reactions,Free Rad. Res. Comm., 2:313.CrossRefGoogle Scholar
  3. Duran, S. and Song, P.-S., 1986, Hypericin and its photodynamic action,Photochem. Photobiol., 43:677.PubMedCrossRefGoogle Scholar
  4. Eriksen, J., Foote, C.S., and Parker, T.L., 1977, Photosensitized oxygenation of alkenes,J. Am. Chem. Soc., 99:6455.CrossRefGoogle Scholar
  5. Eriksen, J., Lund, H., and Nyvad, A.I., 1983, Electron transfer fluorescence quenching of radical ions,Acta Chem. Scand. B, 37:459.CrossRefGoogle Scholar
  6. Franken, T., 1969, Beiträge zur Kenntnis der Typ II photosensibilisierten Oxygenierungsreaktionen in Lösung, Dissertation, University of Bonn.Google Scholar
  7. Gollnick, K., 1968, Type II photooxygenation reactions in solutions,Adv. Photochem., 6:1.CrossRefGoogle Scholar
  8. Gollnick, K. and Schenck, G.O., 1964, Mechanism and stereoselectivity of photosensitized oxygen transfer reactions,Pure Appl. Chem., 9:507.CrossRefGoogle Scholar
  9. Gollnick, K. and Schade, G., 1973, Mikrowellenentladung von CO2: eine neue, ergiebige Quelle für Singulett-Sauerstoff, O2 (1Δg),Tetrahedron Lett., 857.Google Scholar
  10. Gollnick, K. and Schnatterer, A., 1984a, Formation of a 1,2-dioxane by electron transfer photooxygenation of 1,1-di(p-anisyl)ethylene,Tetrahedron Lett., 25:185.CrossRefGoogle Scholar
  11. Gollnick, K. and Schnatterer, A., 1984b, Formation of 1,2-dioxanes by electron transfer photooxygenation of 1,1-disubstituted ethylenes,Tetrahedron Lett., 25:2735.CrossRefGoogle Scholar
  12. Gollnick, K. and Griesbeck, A., 1985, Singlet oxygen photooxygenation of furans. Isolation and reactions of (4+2)-cycloaddition products (unsaturated sec.-ozonides),Tetrahedron, 41:2057.CrossRefGoogle Scholar
  13. Gollnick, K. and Schnatterer, A., 1986, 9,10-Dicyanoanthracene-sensitized photooxygenation of α, α’-dimethylstilbenes. Mechanism and kinetics of the competing singlet oxygen and electron transfer photooxygena¬tion reactions,Photochem. Photobiol., 43:365.CrossRefGoogle Scholar
  14. Gollnick, K. and Paulmann, U., Electron transfer induced photooxygenation and “retro-di-π -methane rearrangement” of 1,1,2,3-tetraarylcyclo- propanes,Tetrahedron, in press.Google Scholar
  15. Gollnick, K. and Franken, T., manuscript in preparation.Google Scholar
  16. Griffin, E.W., Marcantonio, A.F., Kristensen, H., Petterson, R.C., and Irving, C.S., 1965, Photocyclization of propenes to cyclopropanes. Novel phenyl and hydrogen migrations in π, π* systems,Tetrahedron Lett., 2951.Google Scholar
  17. Haynes, R.K., 1978, Lewis-acid-catalyzed oxygenation of 1,1-bicyclohex- enyl and α-terpinene. Reactions in dichloromethane and liquid sulphur dioxide,Austr. J. Chem., 31:131.CrossRefGoogle Scholar
  18. Kawenoki, I., Keita, B., Kossanyi, J., and Nadjo, L., 1982, Reversible electron transfer between the singlet excited state of variously substituted anthraquinones and electron donors. Free activation energy influence,Nouveau J. Chim., 6:387.Google Scholar
  19. Mattes, S.L. and Farid, S., 1983, Photochemical electron transfer reactions of olefins and related compounds,Organic Photochemistry, 6:233.Google Scholar
  20. Mattes, S.L. and Farid, S., 1986, Photochemical electron transfer reactions of 1,1-diarylethylenes,J. Am. Chem. Soc., 108:7356.CrossRefGoogle Scholar
  21. Mizuno, K., Kamiyama, N., Ichinose, N., and Otsuji, Y., 1985, Photooxygenation of 1,2-diarylcyclopropanes via electron transfer,Tetrahedron, 41:2207.CrossRefGoogle Scholar
  22. Rehm, D. and Weller, A., 1970, Kinetics of fluorescence quenching by electron and H-atom transfer,Isr. J. Chem., 8:259.Google Scholar
  23. Santamaria, J., 1981, Photo-oxygenation de composes aromatiques sensi- bilisees par des accepteurs d’electron,Tetrahedron Lett., 22:4511.CrossRefGoogle Scholar
  24. Sawyer, D.T., Chiericato, G., Angelis, C.T., Nanni, E.J., and Tsuchija, T., Effects of media and electrode materials on the electrochemical reduction of dioxygen, 1982,Anal. Chem., 54:1720CrossRefGoogle Scholar
  25. Schaap, A.P., Zaklika, K.A., Kaskar, B., and Fung, W.-M., 1980, Formation of 1,2-dioxetanes via 9,10-dicyanoanthracene-sensitized electron transfer processes,J. Am. Chem. Soc., 102:389.CrossRefGoogle Scholar
  26. Schaap, A.P., Siddiqui, S., Prasad, G., Palomino, E., and Lopez, L., 1984, Cosensitized electron transfer photooxygenation: the photochemical preparation of 1,2,4-trioxolanes, 1,2-dioxolanes and 1,2,4-dioxazo- lidines,J. Photochem., 25:167.CrossRefGoogle Scholar
  27. Schenck, G.O. and Gollnick, K., 1958, Cinetique et inhibition de reaction photosensibilisees en presence d’oxygene moleculaire,J. Chim. Physique, 55:892.Google Scholar
  28. Schenck, G.O. and Gollnick, K., 1963, Über die schnellen Teilprozesse photosensibilisierter Substrat-Übertragungen; Untersuchungen Uber Chemismus und Kinetik der durch Xanthenfarbstoffe photosensibilisier- ten 02-Übertragungen, Forschungsber. d. Landes Nordrhein-Westfalen, Nr. 1256, Westdeutscher Verlag, Köln und Opladen.Google Scholar
  29. Schenck, G.O., Neümtiller, O.A., Schroeter, S., and Ohloff, G., 1965, Zur Autoxidation des (+)-Limonens,Liebigs Ann. Chem., 687:26.CrossRefGoogle Scholar
  30. Schnatterer, A., 1982, Dimethylstilbene als Sonde für Singulett-Sauer- stoff- Und Elektronen-Transfer Photooxygenierungen, Diplomarbeit, University of München.Google Scholar
  31. Spada, L.T. and Foote, C.S., 1980, Detection of radical-ion intermediates in the cyanoaromatic-sensitized photooxidation of trans- and cis- stilbene,J. Am. Chem. Soc., 102:391.CrossRefGoogle Scholar
  32. Steichen, D.S. and Foote, C.S., 1981, Indirect sensitized photooxygenation of aryl olefins,J. Am. Chem. Soc., 103:1855.CrossRefGoogle Scholar
  33. Tang, R., Yue, H.J., Wolf, J.F., and Mares, F., 1978, Oxygenation of cyclic dienes to endoperoxides,J. Am. Chem. Soc., 100:5248.CrossRefGoogle Scholar
  34. Takahashi, Y., Miyashi, T., and Mukai, T., 1983, Trimethylenemethane cation radical: photosensitized (electron transfer) generation and reactivity,J. Am. Chem. Soc., 105:6511.CrossRefGoogle Scholar
  35. Youngman, R.J. and Elstner, E.F., 1984, Photodynamic and reductive mechanisms of oxygen activation by the fungal phototoxins, cercosporin and dothistromin, p. 501, in “Oxygen Radicals in Chemistry and Biology”, Bors, W., Saran, M., and Tait, D., Eds., W. de Gruyter, Berlin.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Klaus Gollnick
    • 1
  • Albert Schnatterer
    • 1
  • Gerald Utschick
    • 1
  • Uwe Paulmann
    • 1
  • Stephan Held
    • 1
  1. 1.Institut für Organische ChemieUniversität MünchenMünchen 2Germany

Personalised recommendations