Hydra Photoresponses to Different Wavelengths

  • Cloe Taddei-Ferretti
  • V. Di Maio
  • S. Ferraro
  • A. Cotugno


Hydra is photosensitive, although missing known organized photorece- ptive cellular structures. Its contraction-relaxation activity is periodic. Short or long wavelength visible light has opposite effects (respectively long/short main contraction-relaxation period during steady stimulation, low/ high efficiency in interrupting a contraction in progress, long/short reaction time until the next contraction after a pulse stimulation given just after a contraction, decrease/increase of the above reaction time as long as the time of the pulse application after a contraction increases) and they interact on each other (as tested with two stimuli of different wavelengths in close succession). A photocycle mechanism could be hypothesized.


Hydra attenuata photoreception photoresponse wavelength effect phase response curve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Anderson and G.O. Mackie, Electrically coupled photosensitive neurons control swimming in a jellyfish,Science, 197 (1977) 186–188PubMedCrossRefGoogle Scholar
  2. 2.
    Colombetti and F. Lenci, Identification and spectroscopic character-ization of photoreceptor pigments. In F. Lenci and G. Colombetti (eds), Photoreception and sensory transduction in aneural organisms, Plenum Press, New York London 1980, pp. 173–188Google Scholar
  3. 3.
    H.R. Condit and F. Grum, Spectral energy distribution of daylight,J. Opt. Soc. Amer., 54 (1964) 973CrossRefGoogle Scholar
  4. 4.
    W.D. Eldred and J. Nolte, Pineal photoreceptors; evidence for a verte-brate visual pigment with two physiologically active states,Vision Res., 18 (1978) 29–32PubMedCrossRefGoogle Scholar
  5. 5.
    L. Ellis, The spectral sensitivity ofHydra carneaL. Agassiz (1850),J. Zool., 48 (1970) 63–68Google Scholar
  6. 6.
    Frigg, Vorkommen und Bedeutung der Carotinoide beiHydra, Z.Vgl. Physiol., 69 (1970) 186–224CrossRefGoogle Scholar
  7. 7.
    E.Hildebrand and N. Dencher, Two photosystems controlling behavioural responses ofHalobacterium halobium,Nature(London), 257 (1975) 46–48PubMedCrossRefGoogle Scholar
  8. 8R.
    Menzel, Spectral sensitivity and color vision in Invertebrates. In H. Autrum (ed.), Handbook of Sensory Physiology, VII/6 Vision in Inverte-brates, A. Invertebrate photoreceptors, Springer Verlag, Berlin 1979, pp. 503–580Google Scholar
  9. 9.
    B. Minke, S. Hochstein and P. Hillmann, Antagonist process as source of visible-light suppression of afterpotential inLimulusUV photoreceptors,J. gen. Physiol., 62 (1972) 787–791CrossRefGoogle Scholar
  10. 10.
    J. Nolte and J. E. Brown, Ultraviolet-induced sensitivity to visible light in ultraviolet receptors inLimulus,J. gen. Physiol., 59 (1972) 186–200PubMedCrossRefGoogle Scholar
  11. 11.
    K. Ohtsu, UV-visible antagonism in extraocular photosensitive neurons of the Anthomedusa,Spirocodon saltatrix(Tilesius),J. Neurobiol., 14 (1983) 145–155PubMedCrossRefGoogle Scholar
  12. 12.
    M. Passano and C. B. McCullough, The light response and the rhythmic potentials inHydra,Proc. Natl. Acad. Sci. USA, 48 (1962) 1376–1382PubMedCrossRefGoogle Scholar
  13. 13.
    M. Passano and C. B. McCullough, Pacemaker hierachies controlling the behaviour of hydras,Nature, 199 (1963) 1174–1175PubMedCrossRefGoogle Scholar
  14. 14.
    M. Passano and C. B. McCullough, Co-ordinating system and behaviour inHydra. I. Pacemaker systems of the periodic contractions,J. Exp. Biol., 41 (1964) 643–664Google Scholar
  15. 15.
    M. Passano and C. B. McCullough, Co-ordinating system and behaviour inHydra. II. The rhythmic potential system,J. Exp. Biol., 42 (1965) 205–231PubMedGoogle Scholar
  16. 16.
    H. Singer, N. B. Rushforth and A. L. Burnett, The photodinamic action of light inHydra,J. Exp. Zool., 154 (1963) 169–173PubMedCrossRefGoogle Scholar
  17. 17.
    L. Spudich and W. Stoeckenius, Photosensory and chemosensory behavior ofHalobacterium halobium,Photobiochem. Photobiophys., 1 (1979) 43–53Google Scholar
  18. 18.
    C.Taddei-Ferretti and S. Chillemi, Modulation ofHydra attenuatarhythmic activity. V. A revised interpretation,Biol. Cybern., 56 (1987) 225–235CrossRefGoogle Scholar
  19. 19.
    C.Taddei-Ferretti and L. Cordelia, Modulation ofHydra attenuatarhythmic activity: Photic stimulation,Arch. Ital. Biol., 113 (1975) 107–121PubMedGoogle Scholar
  20. 20.
    C. Taddei-Ferretti and L. Cordelia, Modulation ofHydra attenuatarhythmic activity: Phase response curve,J. Exp. Biol., 65 (1976) 737–751PubMedGoogle Scholar
  21. 21.
    C. Taddei-Ferretti, S. Chillemi and A. Cotugno, Modulation ofHydra attenuatarhythmic activity. IV. The mechanism responsible for the rhythmic activity,Exp. Biol., 46 (1987) 133–140PubMedGoogle Scholar
  22. 22.
    C. Taddei-Ferretti, L. Cordelia and S. Chillemi, Analysis ofHydracontraction behaviour. In G. 0. Mackie (ed.), Coelenterate ecology and behavior, Plenum Press, New York London 1976, pp. 685–694Google Scholar
  23. 23.
    B. Traulich, V. Hesse and G. Wagner, States of light adaptation in photo- attractedHalobacterium halobiumcells, Intern. Conf. on Sensing and response in microorganisms, Rehovot (1985)Google Scholar
  24. 24.
    M. Yoshida, Extraocular photoreception. In H. Autrum (ed.), Handbook of Sensory Physiology, VII/6 Vision in Invertebrates, A. Invertebrate photoreceptors, Springer Verlag, Berlin 1979, pp. 581–640Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Cloe Taddei-Ferretti
    • 1
  • V. Di Maio
    • 1
  • S. Ferraro
    • 2
  • A. Cotugno
    • 1
  1. 1.Istituto di Cibernetica del C.N.R.Arco FeliceItaly
  2. 2.Istituto di Zoologia, UniversitäGenovaItaly

Personalised recommendations