Skip to main content

Long-Wavelength Phototherapy

  • Chapter
Book cover Light in Biology and Medicine
  • 198 Accesses

Abstract

Long-wavelength phototherapy (PT) using narrow-spectrum fluorescent green lamps has been introduced in 19811,2. The positive results of green lamp PT came unexpected: they were accepted with skepticism as they were in conflict with the current dogma on blue light mechanism of PT action in man3,4. Today, green lamp PT is a well documented procedure5, and several “in vitro” and animal experiments have been reported showing the peculiar characteristics of green light photochemistry of bilirubin (BR)6–10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Vecchi, G. P. Donzelli, M. G. Migliorini, G. Sbrana, and R. Pratesi, New light for phototherapy,The Lancetii:390 (1982).

    Google Scholar 

  2. C. Vecchi, G. P. Donzelli, M. G. Migliorini, and G. Sbrana. Green light phototherapy,Pediatr. Res.17:461 (1983).

    Article  PubMed  CAS  Google Scholar 

  3. J. Ennever, A. F. Mc Donagh, and W. T. Speck, Phototherapy for neonatal jaundice: optimal wavelengths of light,J. Pediatr.103:295 (1984).

    Google Scholar 

  4. L. Ballowitz, F. Hanefeld, and G. Wiese, The Gunn rat: a model for phototherapy,in: “Phototherapy for Neonatal Jaundice”, F. Rubaltelli, and G. Jori, eds., Plenum Press, New York (1984).

    Google Scholar 

  5. C. Vecchi, G. P. Donzelli, G. Sbrana, and R. Pratesi, Phototherapy for neonatal jaundice: clinical equivalence of fluorescent green and “special” blue lamps,J. Pediatr.108:452 (1986).

    Article  PubMed  CAS  Google Scholar 

  6. J. F. Ennever, M. Sobel, A. F. Mc Donagh, and W. T. Speck, Phototherapy for neonatal jaundice: “in vitro” comparison of light sources,Pediatr. Res.18:667 (1984).

    Article  PubMed  CAS  Google Scholar 

  7. J. F. Ennever, Preferential formation of lumirubin by green light,Pediatr. Res.(abstract) 19:218A (1985).

    Article  Google Scholar 

  8. J. F. Ennever, I. Knox, and T. W. Speck, Differences in bilirubin isomer composition in infants treated with green and white light phototherapy,J. Pediatr.109:119 (1986).

    Article  PubMed  CAS  Google Scholar 

  9. A. F. Mc Donagh, and L. A. Palma, Bilirubin photoisomer excretion in Gunn rats: effects of green and blue light,Photochem. Photobiol.45:96S (1987).

    Google Scholar 

  10. G. Agati, A. F. Mc Donagh, R. Pratesi, and F. Fusi, Bilirubin photo-isomerization: wavelength effects,Photochem. Photobiol.45:52S (1987).

    Google Scholar 

  11. J. F. Ennever, J. Knox, and S. C. Denne, Phototherapy for neonatal jaundice: “in vivo” clearance of bilirubin photoproducts,Pediatr. Res.19:205 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. G. Sbrana, M. G. Migliorini, C. Vecchi, and G. P. Donzelli, Laser photolysis of bilirubin,Pediatr. Res.15:1517 (1981).

    Article  PubMed  CAS  Google Scholar 

  13. G. P. Donzelli, M. G. Migliorini, R. Pratesi, G. Sbrana, and C. Vecchi, Laser-oriented search of the optimum light for phototherapy,in: “Phototherapy for Neonatal Jaundice”, F. Rubaltelli, and G. Jori, eds., Plenum Press, New York (1984).

    Google Scholar 

  14. B. S. Rosenstein, and J. M. Ducore, Introduction of DNA strand breaks in normal human fibroblasts exposed to monochromatic UV and visible wavelengths in the 240–546 nm range,Photochem. Photobiol.38:51 (1983).

    Article  PubMed  CAS  Google Scholar 

  15. T. R. C. Sisson, N. Kendall, R. E. Davies, and D. Berger, Factors influencing the effectiveness of phototherapy in neonatal hyper-bilirubinemia, Birth Defects, Original Article Series 6:100 (1970).

    CAS  Google Scholar 

  16. S. M. Goldberg, S. Kendall, and T. R. C. Sisson, Photodecomposition of bilirubin “in vivo”,Clinical Res.18:692 (1970).

    Google Scholar 

  17. L. Ballowitz, G. Gentler, J. Krochmann, R. Pannitschka, G. Roemer, and I. Roemer, Phototherapy in Gunn rats,Biol. Neonate31:229 (1977).

    Article  PubMed  CAS  Google Scholar 

  18. F. Ebbesen, Phototherapy with “daylight” and blue light,Danish Med. Bull.22:207 (1975).

    PubMed  CAS  Google Scholar 

  19. K. L. Tan, The nature of the dose-response relationship of phototherapy for neonatal bilirubinemia,J. Pediatr.90:448 (1977).

    Article  PubMed  CAS  Google Scholar 

  20. K. L. Tan, personal communication (1983).

    Google Scholar 

  21. G. Sbrana, G. P. Donzelli, and C. Vecchi, Efficacy of phototherapy in the management of neonatal hyperbilirubinemia with light sources emitting above 500 nm,Pediatrics80:395 (1987).

    PubMed  CAS  Google Scholar 

  22. J. W. Greenberg, J. F. Ennever, and V. Malhotra, Wavelength dependence of the quantum yield for the structural isomerization of bilirubin,Photochem. Photobiol.46:453 (1987).

    Article  PubMed  CAS  Google Scholar 

  23. J. F. Ennever, Clinical and “in vitro” photochemistry of bilirubin,inthis volume.

    Google Scholar 

  24. C. L. Kapoor, C. R. K. Murti, and P. C. Bajpaj, Uptake and release of bilirubin by skin,Biochem. J.136:35 (1973).

    PubMed  CAS  Google Scholar 

  25. V. Malhotra, J. W. Greenberg, L. L. Dum, and J. F. Ennever, Fatty acid enhancement of the quantum yield for the formation of lumi- rubin from bilirubin bound to human albumin,Pediatr. Res.21:530 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. R. R. Anderson, and J. A. Parrish, The optics of human skin,J. Invest. Dermatol.77:13 (1981).

    Article  PubMed  CAS  Google Scholar 

  27. G. Agati, F. Fusi, P. Galvan, A. F. M. Donagh, and R. Pratesi, Quantum yields for laser photocyclization of bilirubin in the presence of human serum albumin. Dependence of quantum yield on excitation wavelength (submitted for publication).

    Google Scholar 

  28. G. Agati, F. Fusi, R. Pratesi, A. F. Mc Donagh (unpublished data).

    Google Scholar 

  29. J. D. Hardy, H. T. Hammell, and D. Murgatroyd, Spectral transmittance and reflectance of excised human skin,J. Appl. Physiol.9:257 (1956).

    PubMed  CAS  Google Scholar 

  30. S. Wan, R. R. Anderson, J. A. Parrish, Analytical modeling for the optical properties of the skin with “in vitro” and “in vivo” applications,Photochem. Photobiol.34:493 (1981).

    PubMed  CAS  Google Scholar 

  31. R. Pratesi, L. Ronchi, G. Cecchi, G. Sbrana, M. G. Migliorini, C. Vecchi, and G. P. Donzelli, Skin optics and phototherapy,Photochem. Photobiol.40:77 (1984).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Donzelli, G.P. (1988). Long-Wavelength Phototherapy. In: Douglas, R.H., Moan, J., Dall’Acqua, F. (eds) Light in Biology and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0709-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0709-9_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8043-9

  • Online ISBN: 978-1-4613-0709-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics