Skip to main content

Laser Time-Resolved Fluorescence Studies for Investigating Chromophore-Biosubstrate Interactions

  • Chapter
Light in Biology and Medicine

Abstract

Fluorimetric studies utilizing continuous wave (cw) techniques performed on chromophores that bind specifically to the biomacromolecule or to the cell organelle or compartment to be examined allowed a great deal of information to be gained, in the past, on biomolecular structures and kinetics (Udenfried, 1969). Flow cytometry, which has become such an important methodology for auto mated cytology, is just an example of the extent to which the fluorescence properties of Acridines, ie. dyes exhibiting selective affinity for nucleic acids (Albert, 1966), have been exploited to determine, for instance, DNA and RNA contents of single cells or chromosomes aberrations or cell-cycle phases (Mullaney et al., 1974). These investigations basically take advantage of the fact that the optical properties - fluorescence, in particular - of chromophores are affected unequivocally by binding to biomacromolecules or biostruc- tures (Andreoni, 1985). Moreover, the stronger and/or more disruptive is the interaction with the substrate, the more pronounced is, usually, the effect of the binding on the chromophore emission. This property is so general that variations observed both “in vitro” and “in vivo” in the fluorescence quantum yield or in the emission spectrum of fluorescent drugs are commonly considered to be indicative of the stability of their complexation (Geacintov, 1987) or of their binding to specific cell substances or sites (Goormaghtigh et al., 1980; Kessel et al., 1985)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, A., 1966, “The Acridines”, E.Arnold Ltd, London.

    Google Scholar 

  2. Andreoni, A., Sacchi,C.A., Svelto, 0, Bottiroli, G., and Prenna, G., 1978. Laser-induced fluorescence of acridine-DNA complexes,Sov. J. Quantum Electron. 8:1255.

    Article  Google Scholar 

  3. Andreoni, A., Sacchi, C.A., and Svelto, 0, 1979 a, Structural studies of biological molecules via laser-induced fluorescence: acridine-DNA complexes,in: “Chemical and Biochemical Applications of Lasers”, C.Bradley- Moore, ed., Academic Press, New York.

    Google Scholar 

  4. Andreoni, A., Cova, S., Bottiroli, G., and Prenna, G., 1979 b, Fluorescence of complexes of quinacrine mustard with DNA. II: Dependence on the staining conditions,Photochem. Photobiol., 29:951.

    Article  CAS  Google Scholar 

  5. Andreoni, A., Cubeddu, R., De Silvestri, S., Laporta, P., Jori, G., and Reddi, E., 1982, Hematoporphyrin derivative: experimental evidence for aggregated species,Chem. Phys. Letters, 88:33.

    Article  CAS  Google Scholar 

  6. Andreoni, A., Cubeddu, R., De Silvestri, S., Jori, G., Laporta, P. and Reddi, E., 1983, Time-resolved fluorescence studies of hematoporphyrin in different solvent systems,Z. Natuforsch., 38c:83.

    Google Scholar 

  7. Andreoni, A., 1985, Time-resolved fluorescence of dyes of bio-medical relevance: influence of the environment,in: “Primary Photoprocesses in Biology and Medicine”, R.V. Bensasson, G. Jori, E.J. Land and T.G. Truscott, eds, NATO-ASI Series A, Plenum Press, New York

    Google Scholar 

  8. Andreoni, A., Cubeddu, R., Dall’Acqua, F., Knox, C.N., and Truscott, T.G., 1985, Fluorescence lifetimes of furocoumarins. Psoralens,Chem. Phys. Letters, 114:329.

    Article  CAS  Google Scholar 

  9. Andreoni, A., Cubeddu, R., Knox, C.N., and Truscott, T.G., 1987, Fluorescence lifetimes of angular furocoumarins,Photochem. Photobiol., 46:169.

    Article  PubMed  CAS  Google Scholar 

  10. Bensasson, R.V., Land, E.J., and Truscott, T.G., 1983, “Flash Photolysis and Pulse Radiolysis”, Pergamon Press, Oxford.

    Google Scholar 

  11. Bertolaccini, M., and Cova, S., 1974, The logic design of high precision time- -to-pulse-height converters. Part 2: A converter design based on the use of integrated circuits,Nucl. Instrum. Methods, 121:557.

    Article  Google Scholar 

  12. Birks, J.B., 1970, “Photophysics of Aromatic Molecules”, Wiley-Interscience, London.

    Google Scholar 

  13. Bottiroli, G., Prenna, G., Andreoni, A., Sacchi, C.A., and Svelto, 0, 1979, Fluorescence of complexes of quinacrine mustard with DNA. I: Influence of the DNA base composition on the decay time in bacteria,Photochem. Photobiol., 29:23.

    Article  CAS  Google Scholar 

  14. Catterall, R., and Duddell, D.A., 1983, Beyond chi-square: evaluation of parametric models used in the analysis of data from fluorescence decay experiments,in: “Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology”, R.B. Cundall and R.E. Dale, eds, NATO-ASI Series A, Plenum Press, New York

    Google Scholar 

  15. Chaires, J.B., Dattagupta, N., and Crothers, D.M., 1985, Kinetics of the Dau- nomycin-DNA interaction,Biochemistry, 24:260.

    Article  PubMed  CAS  Google Scholar 

  16. Cova, S., Longoni, A., and Andreoni, A., 1981, Towards picosecond resolution with single-photon avalanche diodes,Rev. Sci. Instr., 52:408.

    Article  CAS  Google Scholar 

  17. Cova, S., Longoni, A., Andreoni, A., and Cubeddu, R., 1983, A semiconductor de-tector for measuring ultraweak fluorescence decays with 70 ps FWHM resolution,IEEE J. Quantum Electron., QE-19:630.

    Article  Google Scholar 

  18. Di Marco, A., Arcamone, F., and Zunino, F., 1974, Daunomycin (daunorubicin) and adriamycin and structural analogues: biological activity and mechanisms of action,in: “Antibiotics. Vol. 3: Mechanisms od Action of Antimicrobial and Antitumor Agents”, J.W. Corcoran and F.E. Hahn, eds. Springer- -Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  19. Dougherty, T.J., Potter, W., and Weishaupt, K.R., 1984, The structure of the active component of hematoporphyrin derivative,in: “Porphyrin Localization and Treatment of Tumors”, Alan R. Liss Inc., New York.

    Google Scholar 

  20. Geacintov, N.E., 1987, Principles and applications of fluorescence techniques in biophysical chemistry,Photochem. Photobiol., 45:547.

    Article  PubMed  CAS  Google Scholar 

  21. Goormaghtigh, E., Chatelain, P., Caspers, J., and Ruysschaert, J.M., 1980, Evidence of a complex between adriamycin derivatives and cardiolipin: possible role in cardiotoxicity,Biochem. Pharmac., 29:3003.

    Article  CAS  Google Scholar 

  22. Kessel, D., Chang, C.K., and Musselman, B., 1985, Chemical, biological and biophysical studies on hematoporphyrin derivative,in: “Methods in Por-phyrin Photosensitization”, D. Kessel, ed., Plenum Press, New York

    Google Scholar 

  23. Kessel, D.,1987, to be published in: “Photosensitization: Molecular, Cellular and Medical Aspects”,G Moreno,R.H Pottier and T.G. Truscott, eds., NATO-ASI Series: Cell Biology, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  24. Malatesta, V., and Andreoni, A., 1987, Dynamics of anthracyclines/DNA inter-action: a laser time-resolved fluorescence study,Photochem. Photobiol.in press.

    Google Scholar 

  25. Mullaney, P.F., Steinkamp, J.A., Crissman, H.A., Crams, L.S., and Holm, D.M., 1974, Laser flow microphotometers for rapid analysis and sorting of individual mammalian cells,in: “Laser Applications in Medicine and Biology”, Vol. 2, M.L. Wolbarsht, ed., Plenum Press, New York

    Google Scholar 

  26. Musajo, L., Bordin, F., and Bevilacqua, R., 1967, Photoreactions at 3655 Å linking the 3–4 double bond of furocoumarins with pyrimidine bases,Photochem. Photobiol., 6:251.

    Article  Google Scholar 

  27. Sacchi, C.A., Svelto, 0, and Prenna, G., 1974, Pulsed tunable lasers in cyto- fluorometry,Histochem. J., 6:927.

    Article  Google Scholar 

  28. Svelto, O, 1984,“Principles of Lasers”, Plenum Press, New York.

    Google Scholar 

  29. Udenfried, S., 1969, “Fluorescence Assays in Biology and Medicine”, Vol. II, Academic Press, LOndon, New York.

    Google Scholar 

  30. Ware, W.R., 1983, Kinetics of fluorescence decay: an overview,in: “Time-Resol-ved Fluorescence Spectroscopy in Biochemistry and Biology”, R.B. Cun- dall and R.E. Dale, eds., NATO-ASI Series A, Plenum Press, New York.

    Google Scholar 

  31. Wolf, K.,Fitzpatrick, T.B., Parrish, J.A., Gschnait, F., Cilchrest, B., Honigsmann, H., Pathak, M.A., and Tannenbaum, L., 1976, Photochemother- apy with orally administered methoxalen,Arch. Dermatol., 112:949.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Andreoni, A. (1988). Laser Time-Resolved Fluorescence Studies for Investigating Chromophore-Biosubstrate Interactions. In: Douglas, R.H., Moan, J., Dall’Acqua, F. (eds) Light in Biology and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0709-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0709-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8043-9

  • Online ISBN: 978-1-4613-0709-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics