Skip to main content

Transport Processes during Directional Solidification and Crystal Growth: Scaling and Experimental Study

  • Chapter
Physicochemical Hydrodynamics

Part of the book series: NATO ASI Series ((NSSB,volume 174))

  • 421 Accesses

Abstract

As it is well known, solute transport during solidification and crystal growth is very easily affected by convection1. Thus numerous classes of phenomena may appear depending on the type of couplings occurring between the different involved physical quantities, namely: the temperature field, the concentration field, the interface location and morphology, and the flow field. Moreover, for each class of phenomena, a wide variety of boundary conditions may prevail depending on the particular solidification method under consideration (Czochralski or Bridgman crystal growth, zone melting, casting, welding, surface melting …).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.M. Pimputkar and S. Ostrach, Convective effects in crystals grown from melt, J. Crystal Growth 55:614 (1981).

    Article  ADS  Google Scholar 

  2. G.B. Mc Fadden, R.G. Rehm, S.R. Coriell, W. Clark and K.A. Morrish, Thermosolutal convection during directional solidification, Metall. Trans. A15:2125 (1984).

    Google Scholar 

  3. R.A. Brown, Convection and bulk transport, in: “Materials Sciences in Space,” B. Feuerbacher, ed. Springer, Berlin (1986).

    Google Scholar 

  4. S. Ostrach, Low-gravity fluid flows, Ann. Rev. Fluid Mech. 14:313 (1982).

    Article  ADS  Google Scholar 

  5. L. Napolitano, Surface and buoyancy driven free convection, Acta Astronaut. 9:199 (1982).

    Article  Google Scholar 

  6. J.J. Favier, Macrosegregation: I - Unified analysis during non-steady state solidification; II - A comparative study of theories, Acta Met. 29:197 and 205 (1981).

    Article  Google Scholar 

  7. A. Rouzaud, D. Camel and J.J. Favier, A comparative study of thermal and thermosolutal convective effects in vertical Bridgman crystal growth, J. Crystal Growth 73:149 (1985).

    Article  ADS  Google Scholar 

  8. J.J. Favier and A. Rouzaud, Morphological stability of the solidification interface under convective conditions, J. Crystal Growth 64:367 (1983).

    Article  ADS  Google Scholar 

  9. M. Hennenberg, A. Rouzaud, J.J. Favier and D. Camel, Morphological and thermosolutal instabilities inside a deformable solute boundary layer during directional solidification. Part I: Theoretical methods, J. Physique, Submitted.

    Google Scholar 

  10. D. Camel and J.J. Favier, Scaling analysis of convective solute transport and segregation in Bridgman crystal growth from the doped melt, J. Physique 47:1001 (1986).

    Article  Google Scholar 

  11. D. Camel, P. Tison and J.J. Favier, Marangoni flow regimes in liquid metals, IAF-85–294, 36th IAF Congress, Stockholm (1985).

    Google Scholar 

  12. A.F. Witt, H.C. Gatos, M. Lichtensteiger and C.J. Herman, J. Electrochem. Soc. 125:1832 (1978).

    Article  Google Scholar 

  13. J.J. Favier and J. de Goër, Analyse de la ségrégation du gallium dans des barreaux de germanium solidifiés unidirectionnellement en fuséesonde, CEA Internal Report, Grenoble (1985).

    Google Scholar 

  14. V. I. Polezhaev. K.G. Dubovik, S.A. Nikitin, A.I. Prostomolotov and A.I. Fedyushkin, Convection during crystal growth on earth and in space, J. Crystal Growth 52:465 (1981).

    Article  ADS  Google Scholar 

  15. J.J. Favier, Etude des cinétiques de cristallisation par application de l’effet thermoélectrique. Analyse de la température d’une interface de solidification, Thesis, Grenoble (1977).

    Google Scholar 

  16. A. Rouzaud and J.J. Favier, Influence of various hydrodynamic regimes in a melt on a solidification interface, Submitted to Revue de Physique Appliquée.

    Google Scholar 

  17. J.M. Quenisset and R. Naslain, Effect of forced convection on eutectic growth, J. Crystal Growth 54:465 (1981).

    Article  ADS  Google Scholar 

  18. V. Baskaran and W.R. Wilcox, Influence of convection on lamellar spacing of eutectics, J. Crystal Growth 67:343 (1984).

    Article  ADS  Google Scholar 

  19. J.J. Favier and J. de Goer, Directional solidification of eutectic alloys, Proceedings of the 5th European Symposium on Material Sciences under Microgravity, Schloss Elmau, 5–7 Nov. 1985 (ESA SP-222).

    Google Scholar 

  20. M.D. Dupouy, Convection naturelle en solidification dendritique dirigée d’alliages Al-Cu: Ségrégations et morphologies, Thesis, Grenoble (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Camel, D., Favier, J.J. (1988). Transport Processes during Directional Solidification and Crystal Growth: Scaling and Experimental Study. In: Velarde, M.G. (eds) Physicochemical Hydrodynamics. NATO ASI Series, vol 174. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0707-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0707-5_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8042-2

  • Online ISBN: 978-1-4613-0707-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics