Skip to main content

Nonequilibrium Phenomena in Microemulsions

  • Chapter
Physicochemical Hydrodynamics

Part of the book series: NATO ASI Series ((NSSB,volume 174))

Abstract

When a small amount of surfactant is dissolved in water, molecular aggregates are formed which can solubilize oils giving rise to clear solutions called microemulsions. It has long been known that most microemulsions exhibit critical phenomena which are in certain respects similar to those of multicomponent fluids. The similarities are that there exist scaling laws when these systems approach the critical point or cloud point, and that their dynamics exhibits critical slowing down(l–13). However the physics of these systems differs appreciably from the general properties of multicomponent fluids in that the critical exponents found for micelles and microemulsions seem to be non-universal(1,2,8,12) and in the existence of critical phenomena at temperatures which differ appreciably from the critical temperature, Tc(8). These facts, especially the latter, are the reasons for the special significance of microemulsions for the study of non-equilibrium and/or non-linear phenomena(14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.S Huang and M.W. Kim, Phys. Rev. Lett., 47, 1462 (1981)

    Article  ADS  Google Scholar 

  2. R. Dorshow, F. de Buzzaccarini. C.A. Bunton and D.F. Nicoli, Phys. Rev. Lett., 47, 1336 (1981)

    Article  ADS  Google Scholar 

  3. M. Corti, V. Degiorgio and M. Zulauf, Phys. Rev. Lett., 23, 1617(1982)

    Google Scholar 

  4. M.W. Kim, J.S. Huang, Phys. Rev. B, 26, 2703 (1982)

    Article  ADS  Google Scholar 

  5. G. Fourche, A.M. Bellocq and S. Brunetti, J. Colloid Interface Sci. 88, 302 (1982)

    Article  Google Scholar 

  6. A.-M. Cazabat, D. Chatenay, D. Langevin and J. Meunier, Faraday Discuss. Chem. Soc., 76, 291 (1982)

    Article  Google Scholar 

  7. M. Kotlarchyk, S.H. Chen and S. Huang, Phys. Rev. A, 28, 508 (1985)

    Article  ADS  Google Scholar 

  8. C. Toprakcioglu, J.C. Dorte, B.H. Robinson and A. Howe, J. Chem. Soc. Faraday Trans. 1, 80, 413 (1984)

    Google Scholar 

  9. M.W. Kim, J. Bock and S. Huang, Phys. Rev. Lett., 54, 46 (1985)

    Article  ADS  Google Scholar 

  10. D.Langevin in Physics of Amphiphiles: Micelles, Vesicles and Microemulsions, ed. by V. Degiorgio, North-Holland, Amsterdam 1985, pp. 181

    Google Scholar 

  11. S.H. Chen and M. Kotlarchyk in Physics of Amphiphiles: Micelles, Vesicles and Microemulsions, ed. by V. Degiorgio, North-Holland, Amsterdam 1985, pp. 768

    Google Scholar 

  12. S. Huang and M.W. Kim in Physics of Amphiphiles: Micells, Vesicles and Microemulsions, ed. by V. Degiorgio, North-Holland, Amsterdam 1985, pp. 864

    Google Scholar 

  13. D. Guest and D. Langevin, J. Colloid Interface Sci. 112, 208 (1986)

    Article  Google Scholar 

  14. H. Haken, Advanced Synergetics: Instability Hierachies of Selforganizing Systems and Devices, Springer-Verlag, Berlin 1983

    Google Scholar 

  15. M. Kahlweit, R. Strey P. Firman and D. Haase, Langmuir, 1,281(1985)

    Article  Google Scholar 

  16. E. Dutkiewicz, M.A. López Quintela and W. Knoche in Fast Reactions in Solution DGM, Leuven, August 1982

    Google Scholar 

  17. S. Chandeasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford 1961

    Google Scholar 

  18. C. Normad, Y. Pomeau and M.G. Velarde, Rev. Mod. Phys. 49, 581 (1977)

    Article  ADS  Google Scholar 

  19. M.G. Velarde and J. Castillo in Nonequilibrium Cooperative Phenomena in Physics and Related Fields, ed. by M.G. Velarde, Nato Plenum Press, New York 1984, pp. 179

    Google Scholar 

  20. M.G. Velarde and C. Normand, Sci. Amer., 243, 92 (1980)

    Article  ADS  Google Scholar 

  21. E.L Koschmieder, Adv. Chem. Phys., 26, 177 (1974)

    Article  Google Scholar 

  22. J.R.A. Pearson, J. Fluid Mech., 4, 489 (1958)

    Article  ADS  MATH  Google Scholar 

  23. L.E. Scriven and C.V. Sternling, J. Fluid Mech., 19, 321 (1964)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. K.A. Smith, J. Fluid Mech., 24, 401 (1966)

    Article  ADS  Google Scholar 

  25. M.G. Velarde in Dynamics and Instabilities of Fluid Interfaces, ed. by T.S. Sorensen, Springer-Verlag, Berlin 1979, pp. 260

    Chapter  Google Scholar 

  26. M.A. López Quintela, to be published

    Google Scholar 

  27. R. Graham in Fluctuations, Instabilities and Phase Transitions, ed. by T. Riste, Plenum Press, New York 1975

    Google Scholar 

  28. G. faicolis and C. Van der Broeck in Nonequilibrium Cooperative Phenomena in Physics and Related Fields, ed. by M.G. Velarde, Nato Plenum Press, New York 1984, pp. 473

    Google Scholar 

  29. G. Nicolis in Systems Far from Equilibrium, ed. by L. Garrido, Springer-Verlag, Berlin Heidelberg 1980, pp. 91

    Chapter  Google Scholar 

  30. W. Horsthemke and R. Lefever, Noise-Induced Transitions, Springer-Verlag, Berlin 1983

    Google Scholar 

  31. J.P. Gollub, J.F. Steinman, Phys. Rev. Lett., 45, 5511 (1980)

    Article  Google Scholar 

  32. P. De Kepper, W. Horsthemke, C.R. Acad. Sci. Paris Ser. C278, 251 (1978)

    Google Scholar 

  33. S. Kabashima, S. Kogure, T. Kawakubo, T. Okada, J. Appi. Phys., 50, 6296 (1979)

    Article  ADS  Google Scholar 

  34. S. Kabashima, T. Kawakubo in Systems Far from Equilibrium, ed. by L. Garrido, Springer-Verlag, Berlin 1980, pp. 395

    Chapter  Google Scholar 

  35. S. Kai, T. Kai, M. Takata, K. Hirakawa, J. Phys. Soc. Jpn., 47, 1379 (1979)

    Article  ADS  Google Scholar 

  36. G. Ahlers and R. Behringer, Phys. Rev. Lett., 40, 712(1978)

    Google Scholar 

  37. F.H. Busse in Hydrodynamic Instabilities and the Transition to Turbulence, ed. by H.L. Swinney and J.P. Gollub, Springer-Verlag, Berlin 1981, pp. 97

    Google Scholar 

  38. M.G. Velarde in Nonlinear Phenomena at Phase Transitions and Instabilities, ed. by T. Riste, Plenum Press, New York 1981, pp. 205

    Google Scholar 

  39. P. Sergè, Y. Pomeau and C. Vidal, L’ordre dans le chaos: Vers une approche déterministe de la turbulence, Hermann, Paris 1984

    Google Scholar 

  40. H. Strehlow and W. Knoche, Fundamentals of Chemical Relaxation, Verlag Chemie, Weinheim 1977

    Google Scholar 

  41. M.A. López Quintela, A.F. Nóvoa and J. Quibén, to be published

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Quintela, M.A.L., Nóvoa, A.F., Quibén, J. (1988). Nonequilibrium Phenomena in Microemulsions. In: Velarde, M.G. (eds) Physicochemical Hydrodynamics. NATO ASI Series, vol 174. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0707-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0707-5_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8042-2

  • Online ISBN: 978-1-4613-0707-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics