Advertisement

Liquid Bridge Modeling Of Floating Zone Processing

  • I. Martinez
Part of the NATO ASI Series book series (NSSB, volume 174)

Abstract

A simplified fluidmechanical interpretation of some silicon growth experiments performed aboard Spacelab-1 is given, using the capillary liquid bridge theory, which is discussed in depth. A model is developed to simulate the outer shape during the floating zone process performed, and ideas are given for a more complete thermal simulation. These models would help experimentalists in crystal growth and zone refining to predict unstable configurations, avoid bridge disruption and achieve the desired shape at every stage.

Keywords

Liquid Bridge Parabolic Flight Molten Zone Floating Zone Zone Refining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. MESEGUER, L.A. MAYO, J.C. LLORENTE AND A. FERNANDEZ, J. Crystal Growth 73, p 609, 1985.ADSCrossRefGoogle Scholar
  2. 2.
    I. MARTINEZ, ESA SP-222, p 31, 1984.Google Scholar
  3. 3.
    I. MARTINEZ and A. SANZ, ESA Journal Vol. 9, p 323, 1985.Google Scholar
  4. 4.
    I. DA RIVA and I. MARTINEZ, Naturwissenschaften 73, p 343, 1986.CrossRefGoogle Scholar
  5. 5.
    J. MESEGUER, A. SANZ and J. LOPEZ, J. Crystal, Growth (in press), 1986.Google Scholar
  6. 6.
    I. MARTINEZ and J. MESEGUER, Norderney Symposium on Spacelab-Dl results, DFVLR (FRG) (in press), 1986.Google Scholar
  7. 7.
    I. MARTINEZ, IAF-86–272 (to be published in Acta Astronautica), 1986.Google Scholar
  8. 8.
    D. LANGEBEIN, in Materials Sciences in Space, Springer-Verlag, 1986.Google Scholar
  9. 9.
    J. MESEGUER, J. Fluid Mech. 130, p 123, 1983.MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    W.G. PFANN, J. Metals 4, 1952.Google Scholar
  11. 11.
    A. EYER, R. NITSHE and H. ZIMMERMANN, J. Crystal Growth 47, p 219, 1979.ADSCrossRefGoogle Scholar
  12. 12.
    A. EYER, B.D. KOLBESEN and R. NITSHE, J. Crystal Growth 57, p 145,1982.CrossRefGoogle Scholar
  13. 13.
    R. SCHONHOLZ, R. DIAN and R. NITSHE, J. Crystal Growth 72, p 72, 1985.ADSCrossRefGoogle Scholar
  14. 14.
    G. NAGEL and K.W. BENZ, Adv. in Space Research 4.5, p 23, 1984.ADSCrossRefGoogle Scholar
  15. 15.
    A. EYER, H. LEISTE and R. NITSHE, ESA SP-222, p 173, 1984.Google Scholar
  16. 16.
    A. EYER, H. LEISTE and R. NITSHE, J. Crystal Growth (submitted).Google Scholar
  17. 17.
    T. SUREK and B. CHALMERS, J. Crystal Growth 29, p 1, 1975.ADSCrossRefGoogle Scholar
  18. 18.
    A. EYER, H. LEISTE and R. NITSHE, J. Crystal Growth 71, p 173, 1985.ADSCrossRefGoogle Scholar
  19. 19.
    I. MARTINEZ, COSPAR Space Research XVIII, p 519, 1978.Google Scholar
  20. 20.
    I. DA RIVA and I. MARTINEZ, ESA SP-142, p 67, 1979.Google Scholar
  21. 21.
    I. MARTINEZ and D. RIVAS, Acta Astronautica 9, p 339, 1982.CrossRefGoogle Scholar
  22. 22.
    A. SANZ and I. MARTINEZ, J. Colloid Interf. Sci. 93, p 235, 1983.CrossRefGoogle Scholar
  23. 23.
    I. MARTINEZ, ESA SP-191, p 267, 1983.Google Scholar
  24. 24.
    J. MESEGUER, J. Crystal Growth 67, p 141, 1984.ADSCrossRefGoogle Scholar
  25. 25.
    J. MESEGUER, ESA SP-222, p 297, 1984.Google Scholar
  26. 26.
    I. MARTINEZ and J.M. PERALES, J. Crystal Growth (in press), 1986.Google Scholar
  27. 27.
    I. MARTINEZ and A. EYER, J. Crystal Growth 75, p535, 1986.ADSCrossRefGoogle Scholar
  28. 28.
    A. SANZ, J. Crystal, Growth 74, p 642, 1986.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • I. Martinez
    • 1
  1. 1.E.T.S.I.AeronáuticosUniversidad Politécnica de MadridMadridSpain

Personalised recommendations