Skip to main content

Liquid Bridge Modeling Of Floating Zone Processing

  • Chapter
Physicochemical Hydrodynamics

Part of the book series: NATO ASI Series ((NSSB,volume 174))

  • 422 Accesses

Abstract

A simplified fluidmechanical interpretation of some silicon growth experiments performed aboard Spacelab-1 is given, using the capillary liquid bridge theory, which is discussed in depth. A model is developed to simulate the outer shape during the floating zone process performed, and ideas are given for a more complete thermal simulation. These models would help experimentalists in crystal growth and zone refining to predict unstable configurations, avoid bridge disruption and achieve the desired shape at every stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. MESEGUER, L.A. MAYO, J.C. LLORENTE AND A. FERNANDEZ, J. Crystal Growth 73, p 609, 1985.

    Article  ADS  Google Scholar 

  2. I. MARTINEZ, ESA SP-222, p 31, 1984.

    Google Scholar 

  3. I. MARTINEZ and A. SANZ, ESA Journal Vol. 9, p 323, 1985.

    Google Scholar 

  4. I. DA RIVA and I. MARTINEZ, Naturwissenschaften 73, p 343, 1986.

    Article  Google Scholar 

  5. J. MESEGUER, A. SANZ and J. LOPEZ, J. Crystal, Growth (in press), 1986.

    Google Scholar 

  6. I. MARTINEZ and J. MESEGUER, Norderney Symposium on Spacelab-Dl results, DFVLR (FRG) (in press), 1986.

    Google Scholar 

  7. I. MARTINEZ, IAF-86–272 (to be published in Acta Astronautica), 1986.

    Google Scholar 

  8. D. LANGEBEIN, in Materials Sciences in Space, Springer-Verlag, 1986.

    Google Scholar 

  9. J. MESEGUER, J. Fluid Mech. 130, p 123, 1983.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. W.G. PFANN, J. Metals 4, 1952.

    Google Scholar 

  11. A. EYER, R. NITSHE and H. ZIMMERMANN, J. Crystal Growth 47, p 219, 1979.

    Article  ADS  Google Scholar 

  12. A. EYER, B.D. KOLBESEN and R. NITSHE, J. Crystal Growth 57, p 145,1982.

    Article  Google Scholar 

  13. R. SCHONHOLZ, R. DIAN and R. NITSHE, J. Crystal Growth 72, p 72, 1985.

    Article  ADS  Google Scholar 

  14. G. NAGEL and K.W. BENZ, Adv. in Space Research 4.5, p 23, 1984.

    Article  ADS  Google Scholar 

  15. A. EYER, H. LEISTE and R. NITSHE, ESA SP-222, p 173, 1984.

    Google Scholar 

  16. A. EYER, H. LEISTE and R. NITSHE, J. Crystal Growth (submitted).

    Google Scholar 

  17. T. SUREK and B. CHALMERS, J. Crystal Growth 29, p 1, 1975.

    Article  ADS  Google Scholar 

  18. A. EYER, H. LEISTE and R. NITSHE, J. Crystal Growth 71, p 173, 1985.

    Article  ADS  Google Scholar 

  19. I. MARTINEZ, COSPAR Space Research XVIII, p 519, 1978.

    Google Scholar 

  20. I. DA RIVA and I. MARTINEZ, ESA SP-142, p 67, 1979.

    Google Scholar 

  21. I. MARTINEZ and D. RIVAS, Acta Astronautica 9, p 339, 1982.

    Article  Google Scholar 

  22. A. SANZ and I. MARTINEZ, J. Colloid Interf. Sci. 93, p 235, 1983.

    Article  Google Scholar 

  23. I. MARTINEZ, ESA SP-191, p 267, 1983.

    Google Scholar 

  24. J. MESEGUER, J. Crystal Growth 67, p 141, 1984.

    Article  ADS  Google Scholar 

  25. J. MESEGUER, ESA SP-222, p 297, 1984.

    Google Scholar 

  26. I. MARTINEZ and J.M. PERALES, J. Crystal Growth (in press), 1986.

    Google Scholar 

  27. I. MARTINEZ and A. EYER, J. Crystal Growth 75, p535, 1986.

    Article  ADS  Google Scholar 

  28. A. SANZ, J. Crystal, Growth 74, p 642, 1986.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Martinez, I. (1988). Liquid Bridge Modeling Of Floating Zone Processing. In: Velarde, M.G. (eds) Physicochemical Hydrodynamics. NATO ASI Series, vol 174. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0707-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0707-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8042-2

  • Online ISBN: 978-1-4613-0707-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics