Experiments on Steady and Oscillatory Thermocapillary Convection in Space with Application to Crystal Growth

  • D. Schwabe
  • R. Lamprecht
  • A. Scharmann
Part of the NATO ASI Series book series (NSSB, volume 174)


The various types of liquid motion (convection) due to inhomogeneities of the interfacial tension in free liquid surfaces are called Marangoni effects. The inhomogeneities of the interfacial tension can be of thermal or chemical origin. Marangoni effects are a common phenomenon for all liquids with a free surface (interface between liquid and gas or between liquid and liquid). Being surface effects, Marangoni effects are of higher importance in small volumina or near the free surface. Marangoni effects are flow phenomena which are independent of gravity. The investigation of Marangoni effects in an earth laboratory meets principle difficulties because they are invariably coupled with buoyant convection under normal gravity. Therefore experiments on Marangoni effects under microgravity in space are useful to investigate the pure surface tension driven flow.


Normal Gravity Temperature Oscillation Marangoni Number Reference Experiment Thermocapillary Convection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Schwabe; J. Physico Chemical Hydrodynamics 2 (1981) 263–280Google Scholar
  2. 2.
    D. Schwabe and A. Scharmann; J. Crystal Growth 52 (1981) 435–449ADSCrossRefGoogle Scholar
  3. 3.
    R. Lamprecht, D. Schwabe, A. Scharmann, and E. Schultheiss; J. Crystal Growth 65 (1983) 143–152ADSCrossRefGoogle Scholar
  4. 4.
    A. Eyer, H. Leiste, and R. Nitsche; ESA SP 222 (1984) 173–182Google Scholar
  5. 5.
    A. Eyer, H. Leiste, and R. Nitsche; J. Crystal Growth 71 (1985) 173–182ADSCrossRefGoogle Scholar
  6. 6.
    A. Eyer and H. Leiste; J. Crystal Growth 71 (1985) 249–252ADSCrossRefGoogle Scholar
  7. 7.
    A. Croell, W. Müller, and R. Nitsche; Floating Zone Growth of Surface Coated Silicon Under Microgravity, pending publication in J. Crystal GrowthGoogle Scholar
  8. 8.
    H. Kölker; ESA SP 222 (1984) 169–172Google Scholar
  9. 9.
    H. Kölker; Crystalization of a Silicon Sphere in the Spacelab D1-Mission, private communicationGoogle Scholar
  10. 10.
    D. Schwabe and A. Scharmann; ESA SP 222 (1984) 281–289Google Scholar
  11. 11.
    D. Schwabe, A. Scharmann; F. Preisser, and R. Oeder, J. Crystal Growth 43 (1978) 305–312ADSCrossRefGoogle Scholar
  12. 12.
    D. Schwabe and A. Scharmann; J. Crystal Growth 46 (1979) 125–131ADSCrossRefGoogle Scholar
  13. 13.
    Ch.-H. Chun and D. Schwabe; Marangoni Convection in Floating Zones in “Convective Transport and Instability Phenomena”, Eds. J. Zierep and H. Oertel, Verlag G. Braun, Karlsruhe (1982) 297–317Google Scholar
  14. 14.
    F. Preisser, D. Schwabe, and A. Scharmann; J. Fluid Mech. 126 (1983) 545–567ADSCrossRefGoogle Scholar
  15. 15.
    D. Schwabe, F. Preisser, and A. Scharmann; Astronautica Acta 9 (1982) 265–273CrossRefGoogle Scholar
  16. 16.
    D. Schwabe and A. Scharmann; ESA SP 191 (1983) 213–218Google Scholar
  17. 17.
    D. Schwabe and A. Scharmann; Z. Flugwiss. Weltraumforsch. 9 (1985) 21–28Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • D. Schwabe
    • 1
  • R. Lamprecht
    • 1
  • A. Scharmann
    • 1
  1. 1.I. Physikalisches InstitutJustus-Liebig-Universität GiessenGiessenGermany

Personalised recommendations