Skip to main content

Part of the book series: Developments in Oncology ((DION,volume 61))

Abstract

In 1989 an estimated 104,000 cases of prostatic adenocarcinoma will account for about 20% of all male cancers and 11% of all male cancer-related deaths in the U.S.A. As the U.S. population ages, the incidence of this specific tumor type, which is most common in males over 50 years of age, will increase substantially. Prostatic cancers display widely-varying growth rates which impact on the prognosis and required therapeutic intervention. Histologic examination of tumor types is widely used to correlate morphology with growth rates, but there are still histologically-similar tumors which vary markedly in growth characteristics. Neoplasia differs from normal cellular growth in the expression of one or more genes, a feature of cancer which can result in an altered metabolism of tumor cells. We are using Nuclear Magnetic Resonance Spectroscopy (NMRS), a non-invasive and non-destructive method for observing metabolic events both in vitro and in vivo (1–22), to elucidate these metabolic alterations in prostate tumors with the goal of improving our basic understanding of the oncogenetic process in this organ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sillerud LO, Han CH, Bitensky MW, Francendese AA: Metabolism and structure of triacylglycerols in rat epididymal fat pad adipocytes determined by 13C nuclear magnetic resonance. J. Biol. Chem. 261:4380–4388, 1986.

    PubMed  CAS  Google Scholar 

  2. Sillerud LO, Shulman RG: Structure and metabolism of mammalian liver glycogen monitored by 13C nuclear magnetic resonance. Biochemistry 22:1087–1094, 1983.

    Article  PubMed  CAS  Google Scholar 

  3. Sillerud LO, Heyser JW, Han CH, Bitensky MW: Applications of carbon-13 and sodium-23 NMR in the study of plants, animal, and human cells. In: NMR in Living Systems, T Axenrod and G Ceccarelli (eds), Reidel, Boston, pp. 309–333, 1986.

    Google Scholar 

  4. Scott AI, Baxter RL: Applications of 13C NMR to metabolic studies. Ann. Rev. Biophys. Bioeng. 10:151–174, 1981.

    Article  CAS  Google Scholar 

  5. Radda GK, Taylor DJ: Applications of nuclear magnetic resonance spectroscopy in pathology. In: Int. Rev. Exp. Path., Vol. 27, Academic Press Inc., New York, pp. 1–58, 1985.

    Google Scholar 

  6. Chan L: The current status of magnetic resonance spectroscopy: Basic and clinical aspects. West. J. Med. 143:773–781, 1985.

    PubMed  CAS  Google Scholar 

  7. Avison MJ, Hetherington HP, Shulman RG: Applications of NMR to studies of tissue metabolism. Ann. Rev. Biophys. Chem. 15:377–402, 1986.

    Article  CAS  Google Scholar 

  8. Radda GK: The use of NMR spectroscopy for the understanding of disease. Science 233:640–645, 1986.

    Article  PubMed  CAS  Google Scholar 

  9. Gupta RK: In: NMR Spectroscopy of Cells and Organisms, Vols. I & II, CRC Press Inc., Boca Raton, FL, 1987.

    Google Scholar 

  10. Sostman HD, Armitage IM, Fischer JJ: NMR in cancer. I. High resolution of tumors. Magn. Reson. Imag. 42:265–278, 1984.

    Article  Google Scholar 

  11. Evanochko WT, Ng TC, Glickson JD: Application of in vivo NMR spectroscopy to cancer. Magn. Reson. Med. 1:508–534, 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Maris JM, Chance B: Magnetic resonance spectroscopy of neoplasms. In: Magnetic Resonance Annual 1986, HY Kressel (ed), Raven Press, New York, pp. 213–235, 1986.

    Google Scholar 

  13. Wehrle JP, Glickson JD: 31P NMR spectroscopy of tumors in vivo. Cancer Biochem. Biophys. 8:157–166, 1986.

    PubMed  CAS  Google Scholar 

  14. Glickson JD, Evanochko TT, Sakai TT, Ng TC: In vivo NMR spectroscopy of tumors. In: NMR Spectroscopy of Cells and Organisms, Vol. 1, RK Gupta (ed), CRC Press Inc., Boca Raton, FL, pp. 99–134, 1987.

    Google Scholar 

  15. Cohen SM: Application of nuclear magnetic resonance to the study of liver physiology and disease. Hepatology 3:738–749, 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Roberts JKM, Jardetzky O: Monitoring of cellular metabolism by NMR. Biochim. Biophys. Acta. 639:53–76, 1981.

    PubMed  CAS  Google Scholar 

  17. Shulman RG, Brown TR, Ugurbil K et al: Cellular application of 31P and 13C nuclear magnetic resonance. Science 205:160–166, 1979.

    Article  PubMed  CAS  Google Scholar 

  18. Yoshikawa K, Ohsaka A: 1H and 13C NMR spectroscopic study of rat organs. Physiol. Chem. Phys. 12:515–520, 1980.

    PubMed  CAS  Google Scholar 

  19. Iles RA, Stevens AN, Griffith JR: NMR studies of metabolites in living tissue. Prog. Nucl. Magn. Reson. Spectros. 15: 49–200, 1982.

    Article  CAS  Google Scholar 

  20. Foster MA: Magnetic Resonance in Medicine and Biology, Pergamon Press, Elmsford, NY, 1983.

    Google Scholar 

  21. Halliday KR, Sillerud LO, Fenoglio-Preiser C: Carbon-13 and proton nuclear magnetic resonance spectroscopy and microscopy of neoplasms. In: Adv. Pathol., Vol. 2, C Fenoglio-Preiser (ed), Year Book Medical Publishers, Chicago, pp. 213–257, 1988.

    Google Scholar 

  22. Halliday KR, Fenoglio-Preiser C, Sillerud LO: Differentiation of human tumors from non-malignant tissue by natural abundance 13C NMR spectroscopy. Magn. Reson. Med. 7:384–411, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Jue T, Lohman JAB, Ordidge RJ, Shulman RG: Natural abundance 13C NMR spectrum of glycogen in humans. Magn. Reson. Med. 5:377–379, 1987.

    Article  PubMed  CAS  Google Scholar 

  24. Tavitian BA, Jue T, Rothman DL, Shulman RG: Observing human hepatic and muscle glycogen metabolism with 13C NMR. 2nd European Congress of NMR in Medicine and Biology, Berlin, West Germany, Abstract P92, 1988.

    Google Scholar 

  25. Alger JR, Sillerud LO, Behar KL et al: In vivo 13C nuclear magnetic resonance studies of mammals. Science 241:660–662, 1981.

    Article  Google Scholar 

  26. Sillerud LO, Halliday KR, Griffey RH et al: In vivo 13C NMR spectroscopy of the human prostate. Magn. Reson. Med. 8:224–230, 1988.

    Article  PubMed  CAS  Google Scholar 

  27. Heerschap A, Luyten PR, van der Heyden JI et al: Broadband proton decoupled natural abundance 13C NMR spectroscopy of humans at 1.5T. NMR in Biomedicine 2:1–9, 1989.

    Article  Google Scholar 

  28. Halliday KR, Fenoglio-Preiser C, van der Kogel B, Sillerud LO: Differentiation of tumor from normal human tissue by natural-abundance 13C NMR. Abstr. Soc. Magn. Reson. Med. 5:149–150, 1986.

    Google Scholar 

  29. Halliday KR, Fenoglio-Preiser C, Sillerud LO: Differentiation of tumor from non-malignant human tissue by natural -abundance 13C NMR in vitro. Annuals. New York Acad. Sci. 508:469–471, 1987.

    Article  Google Scholar 

  30. Halliday KR, Fenoglio-Preiser C, Han CH, Sillerud LO: Diagnosis of gastric and colonic adenocarcinomas by natural abundance 13C NMR spectroscopy. Abstr. Soc. Magn. Reson. Med. 6:503–504, 1987.

    Google Scholar 

  31. Halliday KR, Mickey DD, Fenoglio-Preiser C et al: In vitro 13C NMR spectroscopy of Dunning rat prostatic tumors. Abstr. Soc. Magn. Reson. Med. 7:494, 1988.

    Google Scholar 

  32. Halliday KR, Clinard EH, Hutson JY et al: Metabolism of perfused AT-1 spheroids derived from prostate tumors monitored by 13C and 31P NMR spectroscopy. Abstr. Soc. Magn. Reson. Med. 8: #151, 1989.

    Google Scholar 

  33. Sillerud LO, Freyer JP, Mattingly M: Proton NMR microscopy of multi-cellular tumor spheroid microphysiology. Magn. Reson. Med., in press.

    Google Scholar 

  34. Diem K, Lentner C (eds), Geigy Scientific Tables, 7th Edition, Ciba-Geigy Limited, Basel, Switzerland, p. 685, 1970.

    Google Scholar 

  35. Cooper JF, Farid I: The role of citric acid in the physiology of the prostate. III. Lactate/citrate ratios in benign and malignant prostatic homogenates as an index of prostatic malignancy. J. Urol. 92:533–536, 1964.

    PubMed  CAS  Google Scholar 

  36. Marberger H, Marberger E, Mann T, Lutwak-Mann C: Citric acid in human prostatic secretion and metastasizing cancer of prostate gland. Brit. Med. J. March 24:835–836, 1962.

    Article  Google Scholar 

  37. Costello LC, Littleton GK, Franklin RB: Regulation of citrate-related metabolism in normal and neoplastic prostate. In: Endocrine Control in Neoplasis, RK Sharma and WE Criss (eds), Raven Press, New York, pp. 303–314, 1978.

    Google Scholar 

  38. Brauenstein H: Staining lipid in carcinoma of the prostate gland. Amer. J. Clin. Path. 41:44–48, 1964.

    Google Scholar 

  39. Hall M, Silverman L, Wenger AS, Mickey DD: Oncodevelopmental enzymes of the Dunning rat prostatic adenocarcinoma. Cancer Res. 45:4053–4059, 1985.

    PubMed  CAS  Google Scholar 

  40. Isaacs JT, Heston WDW, Weissman RM, Coffey DS: Animal model of hormone sensitive and insensitive prostatic adenocarcinomas: Dunning R-3327-H, R-3327-HI, and R-3327-AT. Cancer Res. 38:4353–4359, 1978.

    PubMed  CAS  Google Scholar 

  41. Freyer JP, Sutherland RM: Selective dissociation and characterization of cells from different regions of multiceli tumor spheroids. Cancer Res. 40:3956–3965, 1980.

    PubMed  CAS  Google Scholar 

  42. Sutherland RM, Durand RE: Growth and cellular characteristics of multiceli spheroids. In: Recent Results in Cancer Research. Spheroids in Cancer Research: Methods and Perspectives, Vol. 95, H Acker, J Carlsson, R Durand and RM Sutherland (eds), Springer Verlag, New York, pp. 24–49, 1984.

    Google Scholar 

  43. Freyer JP, Fink NH, Schor PL et al: A system for viably maintaining a stirred suspension of multicellular spheroids during NMR spectroscopy. NMR in Biomedicine, in press.

    Google Scholar 

  44. Bottomley PA, Roemer PB: Local RF power deposition in tissue is elevated in 1H NMR decoupling experiments employing surface coils. Abstr. Soc. Magn. Reson. Med. 8: #997, 1989.

    Google Scholar 

  45. Shulman GI, Rothman DL, Jue T et al: Differences of muscle glycogen synthesis between normal men and noninsulin dependent diabetics measured directly by 13C NMR spectroscopy. Abstr. Soc. Magn. Reson. Med. 8: #299, 1989.

    Google Scholar 

  46. Sillerud LO, van Hulsteyn DB, Griffey RH: {13C}-polariza-tion transfer proton NMR imaging of a sodium [13C]-formate phantom at 4.7T. J. Magn. Reson. 76:380–385, 1988.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Sillerud, L.O., Halliday, K.R., Freyer, J.P., Griffey, R.H., Fenoglio-Preiser, C. (1990). 13C and 31P NMR Studies of Prostate Tumor Metabolism. In: Evelhoch, J.L., Negendank, W., Valeriote, F.A., Baker, L.H. (eds) Magnetic Resonance in Experimental and Clinical Oncology. Developments in Oncology, vol 61. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0691-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0691-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8028-6

  • Online ISBN: 978-1-4613-0691-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics