Skip to main content

In Situ 31P-MRS as a Potential Predictor for Therapeutic Response of Human Neoplasms

  • Chapter
  • 49 Accesses

Part of the book series: Developments in Oncology ((DION,volume 61))

Abstract

Prediction of radiocurability, chemotherapeutic sensitivity or other therapeutic efficacy of cancer by means of laboratory tests has long been searched for. For example, Glucksmann and coworkers tried to correlate histopathological changes to clinical outcome in individual patients (with uterine cervical carcinoma) as early as 1941 (1). Atkin et al. (2) showed (on human cervical cancer cells) that cancers with near-diploid DNA content tended to be more radioresistant than tetraploid tumors. Kolstad (3) correlated the tissue oxygen concentration with the initial response to radiotherapy. Potential lethal damage repair (PLDR) and labeling index depression has been used by Weishselbaum (4) and Tubiana and Malaise (5) respectively to estimate radiocurability. In prediction of tumor response to chemotherapeutic agents, the stem cell assay (6,7) has been employed. Others have studied in vitro radiobiological parameters as potential predictors (8,9). However, all these predictive assays are invasive, time consuming procedures and lack accuracy due to heterogeneity of tumors and limited by biopsying only a very small part of the tumor mass.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glucksmann A: Preliminary observation on the quantitative examination of human biopsy material taken from irradiated carcinomas. Br. J. Radiol. 14:187–197, 1941.

    Article  Google Scholar 

  2. Atkin WB, Mattinson G, Baker MC: A comparison of the DNA content and chromosome numbers of fifty human tumors. Br. J. Cancer 20:87, 1966.

    Article  PubMed  CAS  Google Scholar 

  3. Kolstad P: Oxygen tension and local recurrence in cervix cancer. Scand. J. Clin. Lab. Invest. 22:145–157, 1968.

    Google Scholar 

  4. Wei scheibaum RR, Dahlberg W, Little JB: Inherently radioresistant cells exist in some human tumors. Proc. Natl. Acad. Sci. 82:4732–4735, 1985.

    Article  Google Scholar 

  5. Tubiana M, Malaise E: Comparison of cell proliferation kinetics in human and experimental tumors: Response to irradiation. Cancer Treat. Rep. 60:1887–1895, 1976.

    PubMed  CAS  Google Scholar 

  6. Salmon S: Cloning of human tumor stem cells. In: Progress in Clinical and Biological Research, S Salmon (ed), New York, A.R. Liss, 48:3–13, 1980.

    Google Scholar 

  7. Selby P, Buick RN, Tannock I: A critical appraisal of the “human tumor stem-cell assay”. N. Engl. J. Med. 308:129–134, 1983.

    Article  PubMed  CAS  Google Scholar 

  8. Fertil B, Malaise EP: Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: Analysis of 101 published survival curves. Int. J. Radiat. Oncol. Biol. Phys. 11:1699–1707, 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Vijayakumar S, Ng TC, Raudkivi U, Meaney TF: Mean inactivation dose (D): A neglected parameter-A critical analysis. Acta Oncologica 28:475–781. 1989.

    Article  Google Scholar 

  10. Ng TC, Lilly MB, Brezovich I et al: 31P NMR studies related to various modalities of cancer therapy. In: Abstracts of the 22nd Experimental NMR Conference 1981. Asilomar, CA, Experimental NMR Conference A-19, 1981.

    Google Scholar 

  11. Ng TC, Evanochko WT, Hiramoto RN et al: 31P NMR spectroscopy of in vivo tumors. J. Magn. Res. 49:271–286, 1982.

    CAS  Google Scholar 

  12. Lilly MB, Katholi CR, Ng TC: Loss of high-energy phosphate following hyperthermia demonstrated by in vivo 31P nuclear magnetic resonance spectroscopy. Cancer Res. 44:633–638, 1984.

    PubMed  CAS  Google Scholar 

  13. Schiffer LM, Braunschweiger PC, Glickson JD et al: Preliminary observations on the correlation of proliferative phenomena with in vivo 31P NMR spectroscopy after tumor chemotherapy. Ann. NY Acad. Sci. 461:270–277, 1986.

    Google Scholar 

  14. Lilly MB, Katholi CR, Ng TC: Direct relationship between high energy phosphate content and blood flow in thermally treated tumors. JNCI 75:885–889, 1986.

    Google Scholar 

  15. Evanochko WT, Sakai TT, Ng TC et al: NMR study of in vivo RIF-1 tumor. Analysis of perchloric acid extracts and identification of 1H, 31P, 13C resonances. Biochem. Biophys. Acta. 805:104–116, 1984.

    Article  PubMed  CAS  Google Scholar 

  16. Sijens PE, Bovee WMMJ, Sejikens D et al: In vivo 31P nuclear magnetic resonance study of the response of a murine mammary tumor to different doses of gamma-radiation. Cancer Res. 46:1427–1432, 1986.

    PubMed  CAS  Google Scholar 

  17. Okunieff P, McFarland E, Rummeny E et al: Effects of oxygen on the metabolism of murine tumors using in vivo 31P NMR. Am. J. Clin. Oncol. 10:475–482, 1987.

    Article  PubMed  CAS  Google Scholar 

  18. Koutcher JA, Okunieff P, Neuringer L et al: Size dependent changes in tumor phosphate metabolism after radiation therapy as detected by 31P NMR spectroscopy. Int. J. Radiat. Oncol. Biol. Phys. 13:1851–1855, 1987.

    Article  PubMed  CAS  Google Scholar 

  19. Evelhoch JL, Keller NA, Corbett TH: Response-specific adriamycin sensitivity markers provided by in vivo 31P nuclear magnetic resonance spectroscopy in murine mammary adenocarcinomas. Cancer Res. 47:3396–3401, 1987.

    PubMed  CAS  Google Scholar 

  20. Bottomley PA, Hart HR, Edelstein WJ et al: NMR imaging/ spectroscopy system to study both anatomy and metabolism. Lancet 2:273–274, 1983.

    Article  PubMed  CAS  Google Scholar 

  21. Ng TC, Majors AW, Meaney TF: In vivo MRS studies of human subjects with a 1.4T MRI system. Radiology 158:517–520, 1986.

    PubMed  CAS  Google Scholar 

  22. Ng TC, Majors AW, Meaney TF et al: In vivo 13P MRS study of human tumors in response to radiation therapy using 1.5T MRI system. In: Magnetic Resonance in Cancer, PS Allen, DP Biosvert, BC Lentie (eds), Toronto, pp. 133–134, 1986.

    Google Scholar 

  23. Oberhaersli RD, Hilton-Jones D, Bore PJ et al: Biochemical investigation of human tumors in vivo with phosphorus-31 magnetic resonance spectroscopy. Lancet 2:8–11, 1986.

    Article  Google Scholar 

  24. Ng TC, Vijayakumar S, Majors AW et al: Response of a non-Hodgkin lymphoma to 60Co therapy monitored by 31P MRS in situ. Int. J. Radiat. Oncol. Biol. Phys. 13:1545–1551, 1987.

    Article  PubMed  CAS  Google Scholar 

  25. Ng TC, Vijayakumar S, Majors AW, Meaney TF: Application of in situ MRS to clinical oncology. Cancer Bull. 40:126–134, 1988.

    Google Scholar 

  26. Ng TC, Majors AW, Vijayakumar S et al: pH of human neoplasms and its alteration in response to radiotherapy measured by 31P MRS in situ. Radiology 170:875–878, 1989.

    PubMed  CAS  Google Scholar 

  27. Ng TC, Grundfest S, Vijayakumar S et al: Therapeutic response of breast carcinoma monitored by 31P MRS in situ. Magn. Reson. Med. 10:125–134, 1989.

    Article  PubMed  CAS  Google Scholar 

  28. Maris JM, Evans AE, McLaughlin AC et al: 31P nuclear magnetic resonance spectroscopic investigation of human neuroblastoma in situ. N. Engl. J. Med. 312:1500–1505, 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Griffiths JR, Cada E, Edward RHT et al: 31P NMR studies of a human tumor in situ. Lancet 1:1436–1437, 1983.

    Google Scholar 

  30. Frahm J, Bruhn H, Gyngell ML et al: Localized proton NMR spectroscopy in different regions of the human brain in vivo. Magn. Reson. Med. 11:47–63, 1989.

    Article  PubMed  CAS  Google Scholar 

  31. Bruhn H, Frahm J, Gyngell, ML et al: Non-invasive differentiation of tumors with use of localized 1H MR spectroscopy in vivo. Initial experience in patients with cerebral tumors. Radiology 172:541–548, 1989.

    PubMed  CAS  Google Scholar 

  32. Roberts JKM, Jardetzky O: Monitoring of cellular metabolism by NMR. Biochem. Biophys. Acta. 639:53–76, 1981.

    PubMed  CAS  Google Scholar 

  33. Meyer RA, Fisher MJ, Nelson SJ, Brown TR: Observer bias in manual integration of phosphorus NMR spectra. In: Book of Abstracts of 7th Annual Meeting of SMRM (eds SMRM), California, Vol. 2, pg. 945, 1988.

    Google Scholar 

  34. Evelhoch JL, Crowley MG, Ackerman JJH: Signal-to-noise optimization and observed volume localization with circular surface coils. J. Magn. Reson. 56:110–112, 1984.

    CAS  Google Scholar 

  35. Majors AW, Ng TC, Xue M, Meaney TF: Monitoring of therapeutic response of human superficial tumors using phase encoded spectroscopy. Magn. Reson. Med. 12:369–378, 1989.

    Article  PubMed  CAS  Google Scholar 

  36. Ross B, Helpser JT, Cox IJ, Young IR: Osteosarcoma and other neoplasms of bone. Arch. Surg. 122:1464–1469, 1987.

    PubMed  CAS  Google Scholar 

  37. Arnold DL, Shoubridge EA, Feindel W, Villemure JG: Metabolic changes in cerebral gliomas within hours of treatment with intra-arterial BCNU demonstrated by phosphorus magnetic resonance spectroscopy. Can. J. Neurol. Sci. 14:570–575, 1987.

    PubMed  CAS  Google Scholar 

  38. Heindel W, Bunke J, Glathe S et al: Combined 1H-MR imaging and localized P31-spectroscopy of intracranial tumors in 43 patients. J. Comput. Assist. Tomogr. 12:907–916, 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Wike-Hooley JL, Haveman J, Reinhold HS: The relevance of tumour pH to the treatment of malignant disease. Radiother. Oncol. 2:343–366, 1984.

    Article  PubMed  CAS  Google Scholar 

  40. Van Den Berg AP, Wike-Hooley JL, Broekmeyer-Reurink MP et al: The relationship between the unmodified initial tissue pH of human tumours and the response of combined radiotherapy and local hyperthermic treatment. Eur. J. Cancer Clini. Oncol. 25:73–78, 1989.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Ng, T.C., Vijayakumar, S., Majors, A., Tefft, M. (1990). In Situ 31P-MRS as a Potential Predictor for Therapeutic Response of Human Neoplasms. In: Evelhoch, J.L., Negendank, W., Valeriote, F.A., Baker, L.H. (eds) Magnetic Resonance in Experimental and Clinical Oncology. Developments in Oncology, vol 61. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0691-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0691-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8028-6

  • Online ISBN: 978-1-4613-0691-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics