Neuropharmacological Aspects of Reflex Sympathetic Dystrophy

  • Ilmar Jurna
Part of the Current Management of Pain book series (CUMP, volume 7)


Neuropharmacological studies on reflex sympathetic dystrophy started when it was first demonstrated (45), that adrenaline and noradrenaline excited afferent nerve fibres from experimental neuromas. Activation resulted from local application or systemic administration of the catecholamines.


Dorsal Root Ganglion Peripheral Nerve Injury Nictitate Membrane Reflex Sympathetic Dystrophy Sympathetic Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beteher, A.M., Bean. G., Casten, D.F. Continuous procaine block of paravertebral sympathetic ganglions. Observations on one hundred patients. J. Am. Med. Ass., 151: 288–292, 1953.Google Scholar
  2. 2.
    Blumberg, H., Jähig, W. Changes of reflexes in vasoconstrictor neurons supplying the cat hindlimb following chronic nerve lesions: a model for studying mechanisms of reflex sympathetic dystrophy ? J. Auton. Nerv. Syst., 7: 399–411, 1983.PubMedCrossRefGoogle Scholar
  3. 3.
    Burchiel, K.J., Russell, L.C. Effects of potassium channel-blocking agents on spontaneous discharges from neuromas in rats. J. Neurosurg., 63: 246–249, 1985.PubMedCrossRefGoogle Scholar
  4. 4.
    Cousins, M.J., Reeve, T.S., Glynn, C.J., Walsh, J.A., Cherry, D.A. Neurolytic lumbar sympathetic blockade: duration of denervation and relief of rest pain. Anaesth. Intens. Care, 7: 121, 1979.Google Scholar
  5. 5.
    Csillik, B., Knyihár-Csillik, E., Szucs, A. Treatment of chronic pain syndromes with iontophoresis of vinea alkaloids to the skin of patients. Neurosci. Letters, 31: 87–90, 1982.CrossRefGoogle Scholar
  6. 6.
    DeSantis, M., Duckworth, J.W. Properties of primary afferent neurons from muscle which are spontaneously active after a lesion of their peripheral processes. Exp. Neurol., 75: 261–274, 1982.CrossRefGoogle Scholar
  7. 7.
    Devor, M. Nerve pathophysiology and mechanisms of pain in causalgia. J. Auton. Nerv. Syst., 7: 371–384, 1983.PubMedCrossRefGoogle Scholar
  8. 8.
    Devor, M., Govrin-Lippmann, R. Axoplasmatic transport block reduces ectopic impulse generation in injured peripheral nerves. Pain, 16: 73–85, 1983.PubMedCrossRefGoogle Scholar
  9. 9.
    Devor, M., Govrin-Lippmann, R., Raber, P. Corticosteroids suppress ectopic neural discharge originating in experimental neuromas. Pain, 22: 127–137, 1985.PubMedCrossRefGoogle Scholar
  10. 10.
    Devor, M., Jähig, W. Activation of myelinated afferents ending in a neuroma by stimulation of the sympathetic supply in the rat. Neurosei. Letters, 24: 43–47, 1981.CrossRefGoogle Scholar
  11. 11.
    Devor, M., Wall, P.D. Reorganization of spinal cord sensory map after peripheral nerve injury. Nature, 276: 75–76, 1978.PubMedCrossRefGoogle Scholar
  12. 12.
    Devor, M., Wall, P.D. Plasticity in the spinal cord sensory map following peripheral nerve injury in rats. J. Neurosei, 7: 679–684, 1981.Google Scholar
  13. 13.
    Ebert, M. H., Shader, R.I. Cardiovascular effects. In: Psychotropic Drug Side Effects: Clinical and Theoretical Perspectives (Shader, R.I., Di Mascio, A., eds.), Williams & Wilkins, Baltimore, pp. 149–163, 1970.Google Scholar
  14. 14.
    Fleckenstein, A., Burn, J.H. The effect of denervation on the action of sympathomimetic amines on the nictitating membrane. Br. J. Pharmacol., 8: 69–78, 1953.Google Scholar
  15. 15.
    Geffen, L. B., Iivett, B.G., Rush, R.A. Immunohistochemical localization of protein components of catecholamine storage vesicles. J. Physiol. (Lond.), 204: 593–605, 1969.Google Scholar
  16. 16.
    Glynn, C.J., Basedow, R.W., Walsh, J.A. Pain relief following post-ganglionie. blockade with IV guanethidine. Br. J. Anaesth., 53: 1297–1302, 1981.PubMedGoogle Scholar
  17. 17.
    Hannington-Kiff, J.G. Intravenous regional sympathetic block with guanethidine. Lancet, I: 1019–1020, 1974.PubMedCrossRefGoogle Scholar
  18. 18.
    Hille, B. The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion. J. Gen. Physiol., 50: 1287–1302, 1967.PubMedCrossRefGoogle Scholar
  19. 19.
    Hylden, J.L.K, Nahin, R.L., Dubner, R. Altered responses of nociceptive cat lamina I spinal dorsal horn neurons alter chronic sciatic neuroma formation. Brain Res., 411: 341–350, 1987.PubMedCrossRefGoogle Scholar
  20. 20.
    Innes, I. R., Kosterlitz, H.W. The elfects of preganglionic and postganglionic denervation on the responses of the nictitating membrane to sympathomimetic substances. J. Physiol (Lond.), 124: 25–43, 1954.Google Scholar
  21. 21.
    Jähig, W. Causalgia and reflex sympathetic dystrophy: in which way is the sympathetic nervous system involved? Trends Neurosci, 8: 471–477, 1985.CrossRefGoogle Scholar
  22. 22.
    Janssen, P.A., Niemegers, C. J.E., Schellekens, H.L. Is it possible to predict the clinical effects of neuroleptic drugs (major tranquilizers) from animal data? Part I: “Neuroleptic activity spectra” for rats, Arzneim.-Forsch., 15: 104–117, 1965.Google Scholar
  23. 23.
    Jurna, I. Electrophysiological effects of antiepileptic drugs. In: Antiepileptic Drugs (Frey, H.-H. and J. Janz, eds.), Handbook of Experimental Pharmacology, Vol. 74, Springer, Berlin, pp. 611–658, 1985.Google Scholar
  24. 24.
    Kirk, E.J. Impulses in dorsal spinal nerve rootlets in cats and rabbits arising from dorsal root ganglia isolated from the periphery. J. Comp. Neurol., 2: 165–176, 1974.CrossRefGoogle Scholar
  25. 25.
    Kleiman, A. Causalgia. Evidence of the existence of crossed sensory sympathetic fibers. Am. J. Surg., 87: 839–841, 1954.PubMedCrossRefGoogle Scholar
  26. 26.
    Koppenhöfer, E. Die Wirkung von Tetraäthylammonium chlorid auf die Membranströme Ranvierscher Schnürringe von Xenopus laevis. Arch. Ges. Physiol., 293: 34–55, 1967.CrossRefGoogle Scholar
  27. 27.
    Korenman, E.M.D., Devor, M. Ectopic adrenergic sensitivity in damaged peripheral nerve axons in the rat. Exp. Neurol, 72: 63–81, 1981.PubMedCrossRefGoogle Scholar
  28. 28.
    Laduron, P., Belpaire, F. Transport of noradrenaline and dopamine-hydroxylase in sympathetic nerves. Life Sci., 7: 1–7, 1968.PubMedCrossRefGoogle Scholar
  29. 29.
    Langer, S.Z., Trendelenburg, U. The onset of denervation sensitivity. J. Pharmacol Exp. Ther., 151: 73–86, 1966.PubMedGoogle Scholar
  30. 30.
    Lisney, S.J.W. Changes in the somatotopic organization of the cat lumbar spinal cord following peripheral nerve transection and regeneration. Brain Res., 259: 31–39, 1983a.PubMedCrossRefGoogle Scholar
  31. 31.
    Lisney, S.J.W. The cat lumbar spinal cord somatotopic map is unchanged after peripheral nerve crush and regeneration. Brain Res., 271: 166–169, 1983b.PubMedCrossRefGoogle Scholar
  32. 32.
    Lockett, M.F. The effect of denervation on the response of the cat’s nictitating membrane to sympathomimetic amines. Br. J. Pharmacol., 5: 485–496, 1950.Google Scholar
  33. 33.
    Loh, L., Nathan, P.W. Painful peripheral states and sympathetic blocks. J. Neurol. Neurosurg. Psychiat., 41: 664–671, 1978.PubMedCrossRefGoogle Scholar
  34. 34.
    Peroutka, S.J., U’Prichard, D.C., Greenberg, D.A., Snyder, S.H. Neuroleptic drug interactions with norepinephrinealpha receptor binding sites in rat brain. NeuropharmacoL, 16: 549–556, 1977.CrossRefGoogle Scholar
  35. 35.
    Robson, R.D.M., Antonaccio, M.J., Fehn, P.A. Cardiovascular pharmacology of neuroleptics. In: Neuroleptics (Fielding, S. and H. Lai, eds.), Futura, New York, pp. 173–201, 1974.Google Scholar
  36. 36.
    Scadding, J.W. Development of ongoing activity, mechanosensitivity, and adrenaline sensitivity in severed peripheral nerve axons, Exp. Neurol., 73: 345–364, 1981.PubMedCrossRefGoogle Scholar
  37. 37.
    Shumacker, H.B. Jr., Spiegal, I.J., Upjohn, R.H. Causalgia. I. The role of sympathetic interruption in the treatment. Surg. Gynec. Obstet., 86: 76–86, 1948.PubMedGoogle Scholar
  38. 38.
    Swerdlow, M. Anticonvulsant drugs used in the treatment of lancinating pain. Anaesthesia, 36: 1129–1132, 1981.PubMedCrossRefGoogle Scholar
  39. 39.
    Swerdlow, M. Anticonvulsant drugs and chronic pain. Clin. NeuropharmacoL, 7: 51–82, 1984.PubMedCrossRefGoogle Scholar
  40. 40.
    Trendelenburg, U. Time course of changes in sensitivity after denervation of the nictitating membrane of the spinal cat. J. Pharmacol. Exp. Ther., 142: 335–342, 1963a.PubMedGoogle Scholar
  41. 41.
    Wall, P.D., Devor, M. The effect of peripheral nerve injury on dorsal root potentials and on transmission of afferent signals in the spinal cord. Brain Res., 209: 95–111, 1981.PubMedCrossRefGoogle Scholar
  42. 42.
    Wall, P.D., Devor, M. Sensory afferent impulses from dorsal root ganglia as well as from the periphery in normal and nerve injured rats, Pain, 17: 321–339, 1983.PubMedCrossRefGoogle Scholar
  43. 43.
    Wall, P.D., Devor, M., Inhal, R., Seadding, J.W., Schonfeld, D., Seltzer, Z., Tomkiewicz, M.M. Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain, 7: 103–113, 1979a.PubMedCrossRefGoogle Scholar
  44. 44.
    Wall, P.D., Seadding, J.W., Tomkiewicz, M.M. The production and prevention of experimental anaesthesia dolorosa. Pain, 6: 175–182, 1979b.PubMedCrossRefGoogle Scholar
  45. 45.
    Wall, P.D., Gutnick, M. Ongoing activity in peripheral nerves: the physiology and pharmacology of impulses originating from a neuroma. Exp. Neurol., 43: 580–593, 1974.PubMedCrossRefGoogle Scholar
  46. 46.
    Walsh, J.A., Glynn, C.J., Cousins, M., Basedow, R.W. Blood flow, sympathetic activity and pain relief following lumbar sympathetic blockade or surgical sympathectomy. Anaesth. Intens. Care, 13: 18–24, 1984.Google Scholar
  47. 47.
    Weiner, N. Drugs that inhibit adrenergic nerves and block adrenergic receptors: In: Goodman and Gilman’s The Pharmacological Basis of Therapeutics (Goodman Gilman, A., Goodman, L.S., Rail, T.W., Murad, F. eds.), Macmillan, New York, pp. 181–214, 1985.Google Scholar
  48. 48.
    Wiesenfeld-Hallin, Z., Hallin, R.G. Possible role of sympathetic activity in abnormal behavior of rats induced by lesion of the sciatic nerve. J. Auton. Nerv Syst., 7: 385–390, 1983.PubMedCrossRefGoogle Scholar
  49. 49.
    Yaari, Y., Devor, M. Phenytoin suppresses spontaneous ectopic discharge in rat sciatic nerve neuromas. Neurosci. Letters, 58: 117–122, 1985.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Ilmar Jurna

There are no affiliations available

Personalised recommendations