Skip to main content

Morphology of smooth muscle and its diversity as studied with scanning electron microscopy

  • Chapter
Ultrastructure of Smooth Muscle

Part of the book series: Electron Microscopy in Biology and Medicine ((EMBM,volume 8))

Abstract

Smooth muscles exhibit remarkable morphological diversity among different organs in their geometrical arrangement, shape, size, amount, and packing density of muscle fibers, as extensively reviewed by Burnstock (1) and Gabella (2,3). These parameters have direct relevance to the overall behavior of individual organs and organ-specific physiological and mechanical properties of the muscles (4-8). The morphology of smooth muscles has been investigated on sections in a variety of organs, particularly and most intensively in the gastrointestinal tract by Gabella (9,10). However, the parameters have not yet been fully scrutinized at the ultrastructural level in any given organ, primarily because of the intrinsic technical limitations of transmission electron microscopy (TEM). Reconstruction of ultra-thin serial sections has been the only means for this sort of investigation, and has been occasionally adopted to assess the size and arrangement of smooth muscle fibers (11-15). Nevertheless, it involves considerable work and requires a skilled hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burnstock G: Structure of smooth muscle and its innervation. In: Smooth Muscle. E Bulbring, AF Brading, AW Jones, T Tomita (eds), London: Edward Arnold, p 1–70, 1970.

    Google Scholar 

  2. Gabella G: Structure of smooth muscle. In: Smooth Muscle: An Assessment of Current Knowledge. E Bulbring, AF Brading, AW Jones, T Tomita (eds), London: Edward Arnold, p 1–46, 1981.

    Google Scholar 

  3. Gabella G: An introduction to the structural variety of smooth muscles. In: Vascular Neuroeffector Mechanisms: 4th International Symposium. JA Bevan et al. (eds), New York: Raven Press, p 13–35, 1983.

    Google Scholar 

  4. Brading AF: Ionic distribution and mechanisms of trans¬membrane ion movements in smooth muscle. In: Smooth Muscle: An Assessment of Current Knowledge. E Bulbring, AF Brading, AW Jones, T Tomita (eds), London: Edward Arnold, p 65–92, 1981.

    Google Scholar 

  5. Casteels R: Membrane potential in smooth muscle cells. In: Smooth Muscle: An Assessment of Current Knowledge. E Bulbring, AF Brading, AW Jones, T Tomita (eds), London: Edward Arnold, p 105–126, 1981.

    Google Scholar 

  6. Kuriyama H: Excitation-contraction coupling in various visceral smooth muscles. In: Smooth Muscle: An Assessment of Current Knowledge. E Bulbring, AF Brading, AW Jones, T Tomita (eds), London: Edward Arnold, p 171–198, 1981.

    Google Scholar 

  7. Tomita T: Electrical activity (spikes and slow waves) in gastro intestinal smooth muscles. In: Smooth Muscle: An Assessment of Current Knowledge. E Bulbring, AF Brading, AW Jones, T Tomita (eds), London: Edward Arnold, p 171–198, 1981.

    Google Scholar 

  8. Creed KE: Functional diversity of smooth muscle. Br Med Bull 35: 243–247, 1979.

    PubMed  CAS  Google Scholar 

  9. Gabella G: Quantitative morphological study of smooth muscle cells in the guinea-pig taenia coli.Cell Tissue Res 170: 161–186, 1976.

    PubMed  CAS  Google Scholar 

  10. Gabella G: On the musculture of the gastro-intestinal tract of the guinea-pig. Anat Embryol 163: 135–156, 1981.

    Article  Google Scholar 

  11. Taxi J: Contribution a l’etude des connexions des neurones moteurs du systeme nerveux autonome. Ann Sci Nat (Zool) 7: 413–674, 1965.

    Google Scholar 

  12. Bennett MR, Rogers DC: A study of the innervation of the taenia coli. J Cell Biol 33: 573–596, 1967.

    Article  PubMed  CAS  Google Scholar 

  13. Merrillees NCR: The nervous environment of individual smooth muscle cells of the guinea-pig vas deferens. J Cell Biol 37: 794–817, 1968.

    Article  PubMed  CAS  Google Scholar 

  14. Rhodin JAG: The ultrastructure of mammalian arterioles and precapillary sphincters.Ultrastruct Res 18: 181–223, 1967.

    Article  CAS  Google Scholar 

  15. Komuro T, Desaki J, Uehara Y: Three-dimensional organization of smooth muscle cells in blood vessels of laboratory rodents. Cell Tissue Res 227: 429–437, 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Evan AP, Dail WG, Dammrose D, Palmer C: Scanning electron microscopy of cell surfaces following removal of extracellular material. Anat Rec 185: 433–446, 1976.

    Article  PubMed  CAS  Google Scholar 

  17. Uehara Y, Suyama K: Visualization of the adventitial aspect of the vascular smooth muscle cells under the scanning electron microscope.Electron Microsc 27: 157–159, 1978.

    CAS  Google Scholar 

  18. Fujiwara T, Uehara Y: Scanning electron microscopy of myenteric plexus: A preliminary communication. J Electron Microsc 29: 397–400, 1980.

    CAS  Google Scholar 

  19. Fujiwara T, Uehara Y: The cytoarchitecture of the wall and the innervation pattern of the microvessels in the rat mammary gland: A scanning electron microscopic observation. Am J Anat 170: 39–54, 1984.

    Article  PubMed  CAS  Google Scholar 

  20. Tachibana S, Takeuchi M, Fujiwara T: Visualization of autonomic varicose terminal axons by scanning electron microscopy. J Electron Microsc 34: 136–138, 1985.

    CAS  Google Scholar 

  21. Komuro T: Three-dimensional visualization of the intraganglionic structures of the rat myenteric plexus: scanning electron microscopy with the connective tissue digestion method. Neurosci Lett 72: 49–53,1986.

    Article  PubMed  CAS  Google Scholar 

  22. Komuro T: Three-dimensional observation of the fibro- blast-like cells associated with the rat myenteric plexus, with special reference to the interstitial cells of Cajal. Cell Tissue Res, 255: 343–351, 1989.

    Article  PubMed  CAS  Google Scholar 

  23. Romeis B: Mikroskopische Technik. München: Oldenburg, 1968.

    Google Scholar 

  24. Kölliker VA: Beiträge zur Kenntnis der glatten Muskeln. Z wiss Zoll 1: 48–87, 1849.

    Google Scholar 

  25. McGill C: The structure of smooth muscle in the resting and in the contracted condition. Am J Anat 9: 493–545, 1909.

    Article  Google Scholar 

  26. Strong KC: A study of the structure of the media of the distributing arteries by the method of microdissection. Anat Rec 72: 151–168, 1938.

    Article  Google Scholar 

  27. Prosser CL, Burnstock G, Kahn J: Conduction in smooth muscle: Comparative structural properties. Am J Physiol 199: 545–552, 1960.

    PubMed  CAS  Google Scholar 

  28. Cooke PH, Fay FS: Correlation between fiber length, ultrastructure, and the length-tension relationship of mammalian smooth muscle. J Cell Biol 52: 105–116, 1972.

    Article  PubMed  CAS  Google Scholar 

  29. Uvelius B: Isometric and isotonic length-tension relations and variations in cell length in longitudinal smooth muscle from rabbit urinary bladder. Acta Physiol Scand 97: 1–12, 1976.

    Article  PubMed  CAS  Google Scholar 

  30. Driska SP, Murphy RA: Estimate of cellular force generation in an arterial smooth muscle with a high actin: myosin ratio. Blood Vessels 15: 26–32, 1978.

    PubMed  CAS  Google Scholar 

  31. Boyde A, Williams JC: Surface morphology of frog striated muscle as prepared for and examined in the scanning electron microscope. J Physiol (London) 197: 10P–11P, 1968.

    CAS  Google Scholar 

  32. Finlay JB, Hunter JA, Steven FS: Preparation for human skin for high-resolution scanning electron microscopy using phosphate buffered crude bacterial alpha-amylase.Microsc 93: 73–76, 1971.

    Article  CAS  Google Scholar 

  33. Papa CM, Farber B: Direct scanning electron microscopy of human skin. Arch Dermatol 104: 262–270, 1971.

    Article  PubMed  CAS  Google Scholar 

  34. Sommerlad BC, Creasey JM: A technique for preparing human dermal and scar specimens for scanning electron microscopy. J Microsc 103: 369–376, 1975.

    Article  PubMed  CAS  Google Scholar 

  35. Sawada H: Scanning electron microscopy of guinea pig taenia coli. Biomed Res 2 (Suppl): 153–158, 1981.

    Google Scholar 

  36. Miller BG, Woods RI, Bohlen HG, Evan AP: A new morphological procedure for viewing microvessels: A scanning electron microscopic study of the vasculature of small intestine. Anat Rec 203: 493–503, 1982.

    Article  PubMed  CAS  Google Scholar 

  37. Fujiwara T, Uehara Y: Scanning electron microscopical study of vascular smooth muscle cells in the mesenteric vessels of the monkey: Arterial smooth muscle cells. Biomed Res 3: 649–658, 1982.

    Google Scholar 

  38. Staubesand J: Anatomie der Blutgefässe. I. Funktionelle Morphologie der Arterien, venen und arterio-venösen Anastomosen. In: Angiologie. M Ratchow (ed), Stutt¬gart., p 23–82, 1959.

    Google Scholar 

  39. Halpern W, Mulvany MJ, Warshaw DM: Mechanical properties of smooth muscle cells in the walls of arterial resistance vessels. J Physiol 275: 85–101, 1978.

    PubMed  CAS  Google Scholar 

  40. Fischer H: Über die funktionelle Bedeutung des Spiralverlaufes der Muskulatur in der Arterienwand. Gegenbaurs Morphol Jahrbuch 91: 394–445, 1951.

    Google Scholar 

  41. von Hayek H: Uber die Kontraktionsfahigkeit der kleinsten Lungenarterien. Z Anat Entwickl Gesch 116: 373–376,1952.

    Article  Google Scholar 

  42. Lang J: Mikroskopische Anatomie der Arterien. Angiologica 2: 225–284, 1965.

    CAS  Google Scholar 

  43. Uehara Y, Fujiwara T: The morphological changes of arterial smooth muscle cells upon vasodilation and vasoconstriction. In: Progress in Microcirculation Research II. FC Courtice, DG Garlick, MA Perry (eds), Kensington: CPME, The University of New South Wales, p 405–410, 1984.

    Google Scholar 

  44. Baluk P, Fujiwara T, Matsuda S: The fine structure of the ganglia of the guinea-pig trachea. Cell Tissue Res 239: 51–60, 1985.

    Article  PubMed  CAS  Google Scholar 

  45. Nakamura K, Yamamoto T: Morphology of smooth muscle cells in the rat thoracic duct. A scanning and transmission electron-microscope study. Cell Tissue Res 251: 243–248, 1988.

    CAS  Google Scholar 

  46. David A, Czernobilsky B: A comparative histologic study of the uterotubal junction in the rabbit, rhesus monkey, and human female. Am J Obstet Gynecol 101: 417, 1968.

    PubMed  CAS  Google Scholar 

  47. Woodruff JD, Pauerstein CJ: The Fallopian Tube. Baltimore: Williams & Wilkins, 1969.

    Google Scholar 

  48. Pauerstein CJ, Alexander FRW, Mobley JA, Fremming BD: Comparative anatomy of the inner longitudinal muscle layer of the oviductal isthmus. Obstet Gynecol 35: 504–512, 1970.

    PubMed  CAS  Google Scholar 

  49. Hodges RD: The Histology of the Fowl. London: Academic Press, 1974.

    Google Scholar 

  50. Arjamaa O, Talo A: Description of the structural control systems of ovum transport in the quail oviduct. Acta Physiol Scand 117: 405–410, 1983.

    Article  PubMed  CAS  Google Scholar 

  51. Tachibana S, Takeuchi M, Uehara Y: The architecture of the musculature of the guinea-pig ureter as examined by scanning electron microscopy. J Urol 134: 582–586, 1985.

    PubMed  CAS  Google Scholar 

  52. Murnaghan GF: Mechanisms of congenital hydronephrosis with reference to factors influencing surgical treatment. Ann Roy Coll Surg Engl 23: 25, 1958.

    CAS  Google Scholar 

  53. Tanagho EA: Ureteral embryology, developmental anatomy, and myology. In: Urodynamics: Hydrodynamics of the Ureter and Renal Pelvis. S Boyarski, GW Gottshalk, EA Tanagho, PD Zimskind (eds), New York: Academic Press, p 3–27, 1971.

    Google Scholar 

  54. Tanagho EA, Miller ER: Abnormal voiding and urinary tract infection. Urol Nephrol A: 165–173, 1972.

    Google Scholar 

  55. Cai C, Gabella G: The musculature of the gall bladder and biliary pathways in the guinea pig. J Anat 136: 237–250, 1983.

    PubMed  CAS  Google Scholar 

  56. MacPherson BR, Yiu V, Lee W, Scott GW: A scanning electron-microscopic study of the muscle layer of the canine gallbladder. Acta Anat 127: 59–64, 1986.

    Article  PubMed  CAS  Google Scholar 

  57. Uvelius B, Gabella G: Relation between cell length and force production in urinary bladder smooth muscle. Acta Physiol Scand 110: 357–365, 1980.

    Article  PubMed  CAS  Google Scholar 

  58. Holstein AF: Muskulatur und Motilität des Nebenhodens beim Kaninchen. Z Zellforsch 76: 498–510, 1967.

    Article  PubMed  CAS  Google Scholar 

  59. Baumgarten HG, Holstein AF, Rosengren E: Arrangement ultrastructure, and adrenergic innervation of smooth musculature of the ductuli efferentes, ductus epididymidis and ductus deferens of man.Z Zellforsch 120: 37–79, 1971.

    Article  PubMed  CAS  Google Scholar 

  60. Burnstock G, Prosser CL: Conduction in smooth muscles: comparative electrical properties. Am J Physiol 199: 553–559, 1960.

    PubMed  CAS  Google Scholar 

  61. Nagai T, Prosser CL: Pattern of conduction in smooth muscle. Am J Physiol 204: 910–914, 1963.

    PubMed  CAS  Google Scholar 

  62. Tomita T: Electrical responses of smooth muscle to external stimulation in hypertonic solution. J Physiol 183: 450–468, 1966.

    PubMed  CAS  Google Scholar 

  63. Bennett MR: Autonomic neuromuscular transmission. In: Monographs of the Physiological Society, No. 30, Cambridge, 1972.

    Google Scholar 

  64. Shiraishi T, Sakaki S, Uehara Y: Architecture of the media of the arterial vessels in the dog brain: A scanning electron-microscopic study. Cell Tissue Res 243: 329–335, 1986.

    Article  PubMed  CAS  Google Scholar 

  65. Nagato T, Yoshida H, Yoshida A, Uehara Y: A scanning electron microscope study of myoepithelial cells in exocrine glands. Cell Tissue Res 209: 1–10, 1980.

    Article  PubMed  CAS  Google Scholar 

  66. Fujiwara T, Ikeuchi M, Uehara Y: Scanning electron microscope study of smooth muscle cells in the mesenteric veins of the monkey. Biomed Res 4: 225–230, 1983.

    Google Scholar 

  67. Hamasaki M, Murakami M: SEM observation of the contractile cells of Japanese monkey seminiferous tubules treated with HCI-collagenase. J Electron Microsc 28: 154–158, 1979.

    CAS  Google Scholar 

  68. Murakami M, Hamasaki M, Okita S, Abe J: SEM surface morphology of the contractile cells in the rat seminiferous tubules. Experientia 35: 1099–1101, 1979.

    Article  PubMed  CAS  Google Scholar 

  69. Böck P, Breitenecker G, Lunglmayr G: Peroxysomen im Ovar der Maus. Z Zellforsch Mikrosk Anat 133: 519–527, 1972.

    Article  PubMed  Google Scholar 

  70. Suvanto O, Kormano M: The relation between in vitro contractions of the rat seminiferous tubules and the cyclic stage of the seminiferous epithelium. J Reprod Fertil 21: 227–232, 1970.

    Article  PubMed  CAS  Google Scholar 

  71. Ishikawa H, Sawada H, Yamada E: Surface and internal morphology of skeletal muscle. In: Handbook of Physiology, Section 10, Skeletal Muscle. LD Peachey, RH Adrian, SR Geiger (eds), Bethesda, MD: American Physiological Society, p 1–21, 1983.

    Google Scholar 

  72. Uehara Y, Campbell GR, Burnstock G: Muscle and its Innervation: An Atlas of Fine Structure. London: Edward Arnold, 1976.

    Google Scholar 

  73. Gabella G: Arrangement of smooth muscle cells and intramuscular septa in the taenia coli. Cell Tissue Res 184: 195–212, 1977.

    Article  PubMed  CAS  Google Scholar 

  74. Komuro T, Burnstock G: The fine structure of smooth muscle cells and their relationship to connective tissue in the rabbit portal vein. Cell Tissue Res 210: 257–267, 1980.

    Article  PubMed  CAS  Google Scholar 

  75. Henderson RM: Cell-to-cell contacts. In: Methods in Pharmacology, Vol 3, Smooth Muscle. EE Daniel, DM Paton (eds), New York: Plenum Press, p 47–77, 1975.

    Google Scholar 

  76. Gosling JA, Dixon JS: Structural evidence in support of an urinary tract pacemaker. Br J Urol 44: 550–560, 1972.

    Article  PubMed  CAS  Google Scholar 

  77. Gosling JA, Dixon JS: Species variation in the location of upper urinary tract pacemaker cells. Invest Urol 11: 418–423, 1974.

    PubMed  CAS  Google Scholar 

  78. Richardson KC: The fine structure of autonomic nerve endings in smooth muscle with special reference to the vas deferens. Acta Neuroveg (Wien) 26: 373–376, 1964.

    Article  CAS  Google Scholar 

  79. Lane BP: Alterations in the cytologic detail of intestinal smooth muscle cells in various stages of contraction. J Cell Biol 27: 199–213, 1965.

    Article  PubMed  CAS  Google Scholar 

  80. Gabella G: Structural changes in smooth muscle cells during isotonic contraction. Cell Tissue Res 170: 187–201, 1976.

    PubMed  CAS  Google Scholar 

  81. Todd ME, Laye CG, Osborne DN: The dimensional characteristics of smooth muscle in rat vessels. Circ Res 53: 319–331, 1983.

    PubMed  CAS  Google Scholar 

  82. Mulvany MJ, Halpern W: Mechanical properties of vascular smooth muscle cells in situ. Nature 260: 617–619, 1976.

    Article  PubMed  CAS  Google Scholar 

  83. Rhodin JAG: Fine structure of vascular walls in mammals. Physiol Rev 42 (Suppl) 5: 48–81, 1962.

    Google Scholar 

  84. Hua C, Cragg B: Measurements of smooth muscle cells in arterioles of guinea-pig ileum. Acta Anat 107: 224–230, 1980.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Uehara, Y., Fujiwara, T., Nakashiro, S., De Shan, Z. (1990). Morphology of smooth muscle and its diversity as studied with scanning electron microscopy. In: Ultrastructure of Smooth Muscle. Electron Microscopy in Biology and Medicine, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0683-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0683-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8025-5

  • Online ISBN: 978-1-4613-0683-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics