Advertisement

Arctic Sea-Ice Biota

  • Rita A. Horner

Abstract

Ice is an important physical feature of the environment in polar regions and strongly affects the plants and animals living in these areas. Ice reduces the amount of light reaching the water column, and also reduces heat and gas exchange. A salinity minimum directly beneath the ice and reduced mixing of the water combine to enhance the vertical stability of the water column. At the same time, the upper surface of the ice provides a place for marine mammals and birds to rest, feed, and bear their young, while the lower surface provides a substrate for microalgae, meiofauna, epifauna, and some fish. The ecological importance of these complex communities associated with sea ice is gradually becoming better known. In this chapter, I will review the information currently available on those organisms associated with the bottom few centimeters of ice at the ice-seawater interface, in particular, the microalgae, meiofauna, and epifauna.

Keywords

Pennate Diatom Spring Phytoplankton Bloom International Geophysical Year Pond Inlet Arctic Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackley, S. F. 1982. Ice scavenging and nucleation: Two mechanisms for incorporation of algae into newly formed sea ice. EOS, 63:54.Google Scholar
  2. Ackley, S. F., K. R. Buck, and S. Taguchi. 1979. Standing crop of algae in the sea ice of the Weddell Sea region. Deep-Sea Res. 26A:269–281.CrossRefGoogle Scholar
  3. Adam, D. P., and A. D. Mahood. 1981. Chrysophyte cysts as potential environmental indicators. Geol. Soc. Am. Bull. 92:839–844.CrossRefGoogle Scholar
  4. Alexander, V. 1974. Primary productivity regimes of the nearshore Beaufort Sea, with reference to potential roles of ice biota. In J. C. Reed and J. E. Sater (eds.), The Coast and Shelf of the Beaufort Sea. The Arctic Institute of North America, Arlington, pp. 609–635.Google Scholar
  5. Alexander, V. 1980. Interrelationships between the seasonal sea ice and biological regimes. Cold Regions Sci. Tech. 2:157–178.Google Scholar
  6. Alexander, V., and T. Chapman. 1981. The role of epontic algal communities in Bering Sea ice. In D. W. Hood and J. A. Calder (eds.), The Eastern Bering Sea shelf: Oceanography and Resources. University of Washington Press, Seattle, pp. 773–780.Google Scholar
  7. Alexander, V., R. Homer, and R. C. Clasby. 1974. Metabolism of Arctic Sea Ice Organisms. Rep. R74–4, Institute of Marine Science, University of Alaska, Fairbanks. 120p.Google Scholar
  8. Allen, M. B. 1971. High latitude phytoplankton. Ann. Rev. Ecol. Syst. 2:261–276.CrossRefGoogle Scholar
  9. Andersen, O. G. N. 1977. Primary production associated with sea ice at Godhaven, Disko, West Greenland. Ophelia 16:205–220.Google Scholar
  10. Andriashev, A. P. 1968. The problem of the life community associated with the Antarctic fast ice. In R. I. Currie (ed.), Symposium on Antarctic Oceanography. W. Heffer & Sons Ltd., Cambridge, pp. 147–155.Google Scholar
  11. Apollonio, S. 1961. The chlorophyll content of Arctic sea-ice. Arctic 14:197–200.Google Scholar
  12. Apollonio, S. 1965. Chlorophyll in Arctic sea ice. Arctic 18:118–122.Google Scholar
  13. Banse, K. 1974. Determining the carbon-tochlorophyll ratio of natural phytoplankton. Mar. Biol. 41:199–212.CrossRefGoogle Scholar
  14. Barnard, J. L. 1959. Epipelagic and under-ice Amphipoda of the central Arctic Basin. In V. Bushnell (ed.), Scientific Studies at Fletcher’s Ice Island T-3 (1952–1955). Geophysical Research Paper 63, pp. 115–152.Google Scholar
  15. Booth, J. A. 1984. The epontic algal community of the ice edge zone and its significance to the Davis Strait ecosystem. Arctic 37:234–243.Google Scholar
  16. Bradstreet, M. S., and W. E. Cross. 1982. Trophic relationships at high Arctic ice edges. Arctic 35:1–12.Google Scholar
  17. Buck, K. R. 1980. Morphology and Distribution of the Acanthoecidae (Choanoflagellata) from the Weddell Sea during the Austral Summer, 1977. Report 80–16, Cold Regions Research and Engineering Laboratory, Hanover, N.H., 26 p.Google Scholar
  18. Bunt, J. S. 1963. Diatoms of Antarctic sea-ice as agents of primary production. Nature 199:1255–1257.CrossRefGoogle Scholar
  19. Bunt, J. S. 1964. Primary productivity under sea ice in Antarctic waters. 2: Influence of light and other factors on photosynthetic activities of Antarctic marine microalgae. Antarct. Res. Ser. 1:27–31.Google Scholar
  20. Bunt, J. S. 1968. Some characteristics of micro-algae isolated from Antarctic sea ice. Antarct. Res. Ser. 11:1–14.Google Scholar
  21. Bunt, J. S., and C. C. Lee. 1972. Data on the composition and dark survival of four sea-ice microalgae. Limnol. Oceanogr. 17:458–461.CrossRefGoogle Scholar
  22. Bunt, J. S., and E. J. F. Wood. 1963. Microalgae and Antarctic sea-ice. Nature 199:1254–1255.CrossRefGoogle Scholar
  23. Bunt, J. S., O. van H. Owens, and C. Hoch. 1966. Exploratory studies on the physiology and ecology of a psychrophilic marine diatom. J. Phycol. 2:96–100.CrossRefGoogle Scholar
  24. Burch, M. D., and H. J. Marchant. 1983. Motility and microtubule stability of Antarctic algae at sub-zero temperatures, Protoplasma 115:240–242.CrossRefGoogle Scholar
  25. Bursa, A. S. 1963. Phytoplankton in coastal waters of the Arctic Ocean at Point Barrow, Alaska. Arctic 16:239–262.Google Scholar
  26. Bursa, A. S. 1965. Discoasteromonas calciferus n. sp., an Arctic relict secreting Discoaster Tak [sic] Sin Hok 1927. Grana Palynol. 6:147–165.CrossRefGoogle Scholar
  27. Bursa, A. S. 1971. Morphogenesis and taxonomy of fossil and contemporary Dinophyta secreting discoasters. In A. Farinacci (ed.), Proceedings II Planktonic Conference Roma, 1970, vol. 1. Edizioni Technoscienza, Rome, pp. 129–143.Google Scholar
  28. Carey, A. G., Jr. 1982. Shallow southwest Beaufort Sea macrofauna: Interactions with the epibenthic community. EOS 3:949.Google Scholar
  29. Carey, A. G., Jr. 1985. Marine ice fauna: Arctic. In R. Homer (ed.), Sea Ice Biota, CRC Press, Boca Raton, pp. 173–190.Google Scholar
  30. Carey, A. G., Jr., and M. A. Boudrias. 1987. Feeding ecology of Pseudalibrotus (Onisimus) litoralisKröyer (Crustacea: Amphipoda) on the Beaufort Sea inner continental shelf. Polar Biol. 8:29–33.CrossRefGoogle Scholar
  31. Carey, A. G., Jr., and P. A. Montagna. 1982. Arctic sea ice faunal assemblages: First approach to description and source of underice meiofauna. Mar. Ecol. Prog. Ser. 8:1–8.CrossRefGoogle Scholar
  32. Clasby, R. C., V. Alexander, and R. Homer 1976. Primary productivity of sea-ice algae. In D. W. Hood and D. C. Burrell (eds.), Assessment of the Arctic Marine Environment: Selected Topics. Institute of Marine Science, University of Alaska, Fairbanks, pp. 289–327.Google Scholar
  33. Clasby, R. C., R. Homer, and V. Alexander. 1973. An in situ method for measuring primary productivity of Arctic sea ice algae. J. Fish. Res. Board Can. 30:835–838.CrossRefGoogle Scholar
  34. Cleve, P. T. 1883. Diatoms collected during the Expedition of the Vega. Vega-Expeditionens Vetenskapliga lakttagelser 3:455–517.Google Scholar
  35. Cleve, P. T. 1896. Diatoms from Baffin Bay and Davis Strait. Bih. K. Sven. Vetenskapsakad. Handl. 22, Afd. III (4): 1–22.Google Scholar
  36. Cleve, P. T. 1898. Diatoms from Franz-Josef Land collected by the Harmsworth-Jackson Expedition. Bih. K. Sven. Vetenskapsakad. Handl. 24, Afd. III (2). 3–26.Google Scholar
  37. Cleve, P. T. 1899. Mikroskopiskundersökning at stoft, funnet pa drifis i Ishafvet. Oefv. K. Vetenskapsakad. Foreh. 1899(3):123–130.Google Scholar
  38. Cleve, P. T. 1900. Microscopical examination of dust from drift-ice north of Jan Mayen. Oefv. K. Vetenskapsakad. Foreh. 1900(4):393–397.Google Scholar
  39. Cleve, P. T., and A. Grunow. 1880. Beiträge zur Kenntniss der arctischen Diatomeen. K. Sven. Vetenskapsakad. Handl. 17(2):1–122.Google Scholar
  40. Crosby, L. H., and E. J. F. Wood. 1959. Studies on Australian and New Zealand diatoms. II: Normally epontic and benthic genera. R. Soc. N.Z. Trans. 86:1–58.Google Scholar
  41. Cross, W. E. 1982. Under-ice biota at the Pond Inlet ice edge and in adjacent fast ice areas during spring. Arctic 35:13–27.Google Scholar
  42. Dale, B. 1983. Dinoflagellate resting cysts: “Benthic plankton.” In G. A. Fryxell (ed.), Survival Strategies of the Algae. Cambridge University Press, Cambridge, pp. 69–136.Google Scholar
  43. Demers, S. J., C. Therriault, and C. DescolosGros. 1984. Biomasse et composition spécifique de la microflore des glaces saisonnières: Influences de la lumière et de la vitesse de congélation. Marine Biol. 78:185–191.CrossRefGoogle Scholar
  44. Dunbar, M. J., and J. C. Acreman. 1980. Standing crops and species composition of diatoms in sea ice from Robeson Channel to the Gulf of St.Lawrence. Ophelia 19:61–72.Google Scholar
  45. Ehrenberg, C. G. 1841. Einen Nachtrag zu dem Vortrage über Verbreitung und Einfluss des mikroskopischen Lebens in Süd-und Nord-Amerika. Akad. Wiss., Berlin, Monatsber. 1841:202–209.Google Scholar
  46. Ehrenberg, C. G. 1853. Über neue Anschauungen des kleinsten nördlichen Polarlebens, Akad. Wiss., Berlin, Monatsber. 1853:522–529.Google Scholar
  47. English, T. S. 1961. Some Biological Oceanographic Observations in the Central North Polar Sea, Drift Station Alpha, 1957–1958. Sci. Rep. No. 15, The Arctic Institute of North America, Washington, D.C. 79p.Google Scholar
  48. Falkowski, P. G. 1980. Light-shade adaptation in marine phytoplankton. In P. G. Falkowski (ed.), Primary Productivity in the Sea. Plenum Press, New York, pp. 99–119.Google Scholar
  49. Fryxell, G. A., T. A. Villareal, and G. J. Doucette. 1981. Diatom resting spores and Agulhas collections. Antarct. J. U.S. 16:128–130.Google Scholar
  50. Garrison, D. L., S. F. Ackley, and K. R. Buck. 1983. A physical mechanism for establishing algal populations in frazil ice. Nature 306:363–365.CrossRefGoogle Scholar
  51. George, R. Y., and A. Z. Paul 1970. USC-FSU Biological Investigations from the Fletcher’s Ice Island T-3 on Deep-sea and Under-ice Benthos of the Arctic Ocean. Tech. Rep. No. 1, University of Southern California Arctic Project, Los Angeles, 73 p.Google Scholar
  52. Golikov, A. N., and A. G. Averincev. 1977. Distribution patterns of benthic and ice biocenoses in the high latitudes of the Polar Basin and their part in the biological structure of the World Ocean. In M. J. Dunbar (ed.), Polar Oceans. The Arctic Institute of North America, Calgary, pp. 331–364.Google Scholar
  53. Grainger, E. H. 1977. The annual nutrient cycle in sea-ice. In M. J. Dunbar (ed.), Polar Oceans. The Arctic Institute of North America, Calgary, pp. 285–299.Google Scholar
  54. Grainger, E. H., and M. S. Evans. 1982. Seasonal variations in chlorophyll and nutrients in a Canadian Arctic estuary. Estuaries5: 294–301.CrossRefGoogle Scholar
  55. Grainger, E. H., and S. I. C. Hsiao. 1982. A study of the ice biota of Frobisher Bay, Baffin Island 1979–1981. Can. Manuscr. Rep. Fish. Aquat. Sci. No. 1647, 128 p.Google Scholar
  56. Gran, H. H. 1904. Diatomaceae from the ice-floes and plankton of the Arctic Ocean. Sci. Res. Norw. N. Polar Exped. 4(11):3–74.Google Scholar
  57. Grant, W. S., and R. Homer. 1976. Growth responses to salinity variation in four Arctic ice diatoms. J. Phycol. 12:180–185.Google Scholar
  58. Green, J. M., and D. H. Steele. 1975. Observations on marine life beneath sea ice, Resolute Bay, N.W.T. Proceedings Circumpolar Conference on Northern Ecology, vol. 2. National Research Council of Canada, Ottawa, pp. 77–86.Google Scholar
  59. Gulliksen, B. 1984. Cryopelagic fauna from Svalbard waters. Sarsia 69:17–23.Google Scholar
  60. Hällfors, G., and A. Niemi. 1974. A Chrysochromulina(Haptophyceae) bloom under the ice in the Tvärminne Archipelago, southern coast of Finland. Mem. Soc. Fauna Flora Fenn. 50:89–104.Google Scholar
  61. Hameedi, M. J. 1978. Aspects of water column primary productivity in the Chukchi Sea during summer. Marine Biol. 48:37–46.CrossRefGoogle Scholar
  62. Hargraves, P. E., and F. W. French. 1983. Diatom resting spores: Significance and strategies. In G. A. Fryxell (ed.), Survival Strategies of the Algae. Cambridge University Press, Cambridge, pp. 49–68.Google Scholar
  63. Hitchcock, G. L. 1980. Diel variation in chlorophyll a, carbohydrate and protein content of the marine diatom Skeletonema costatum. Marine Biol. 57:271–278.CrossRefGoogle Scholar
  64. Holmquist, C. 1958. An observation on young specimens of Ammodytes dubius. Medd. Gronl. 159(2):9–14.Google Scholar
  65. Homer, R. 1976. Sea ice organisms. Oceanogr. Mar. Biol. Ann. Rev. 14:167–182.Google Scholar
  66. Homer, R. 1977. History and recent advances in the study of ice biota. In M. J. Dunbar (ed.), Polar Oceans. The Arctic Institute of North America, Calgary, pp. 269–283.Google Scholar
  67. Homer, R. 1984. Do ice algae produce the spring phytoplankton bloom in seasonally ice-covered waters? A review of recent literature. In D. Mann (ed.), Proceedings of the Seventh Symposium on Living and Fossil Diatoms. J. Cramer, Braunschweig, pp. 401–409.Google Scholar
  68. Homer, R. 1985. History of ice algal investigations. In R. Homer (ed.), Sea Ice Biota, CRC Press, Boca Raton, Fla., pp. 1–19.Google Scholar
  69. Homer, R. and V. Alexander. 1972. Algal populations in Arctic sea ice: An investigation of heterotrophy. Limnol. Oceanogr. 17:454–458.CrossRefGoogle Scholar
  70. Homer, R., and G. C. Schrader. 1982. Relative contributions of ice algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 35:484–503.Google Scholar
  71. Homer, R., E. E. Syvertsen, D. P. Thomas, and C. Lange. 1988. Proposed terminology and reporting units for sea ice algal assemblages. Polar Biol. 8:249–253.CrossRefGoogle Scholar
  72. Hoshiai, T. 1977. Seasonal change of ice communities in the sea ice near Syowa Station Antarctica. In M. J. Dunbar (ed.), Polar Oceans. The Arctic Institute of North America, Calgary, pp. 307–317.Google Scholar
  73. Hsiao, S. I. C. 1980. Quantitative composition, distribution, community structure and standing stock of sea ice microalgae in the Canadian Arctic. Arctic 33:768–793.Google Scholar
  74. Hsiao, S. I. C. 1983. A checklist of marine phytoplankton and sea ice microalgae recorded from Arctic Canada. Nova Hedwigia 37:225–313.Google Scholar
  75. Jeffrey, S. W., and M. Vesk. 1981. The phytoplankton-systematics, morphology and ultrastructure. In M. N. Clayton and R. J. King (eds.), Marine Botany: An Australasian Perspective. Longman Cheshire, Melbourne, pp. 138–179.Google Scholar
  76. Kern, J. C., and A. G. Carey, Jr. 1983. The faunal assemblage inhabiting seasonal sea ice in the nearshore Arctic Ocean with emphasis on copepods. Mar. Ecol. Prog. Ser. 10:159–167.CrossRefGoogle Scholar
  77. Kol, E. 1942. The snow and ice algae of Alaska. Smithson. Misc. Collect. 101(16):1–36.Google Scholar
  78. Larsen, L. 1980. Sediment-laden sea ice: Concepts, problems, and approaches. Outer Continental Shelf Environmental Assessment Program, BLM/NOAA. Arctic Project Bull. 29:59–73.Google Scholar
  79. Legendre, L., R. G. Ingram, and M. Poulin. 1981. Physical control of phytoplankton production under sea ice (Manitounuk Sound, Hudson Bay). Can. J. Fish. Aquat. Sci. 38:1385–1392.CrossRefGoogle Scholar
  80. Li, W. K. W., and T. Platt. 1982. Distribution of carbon among photosynthetic end-products in phytoplankton of the eastern Canadian Arctic. J. Phycol. 18:466–471.CrossRefGoogle Scholar
  81. Lowry, L. F., and K. J. Frost. 1981. Distribution, growth and food of Arctic cod (Boreogadus saida)in the Bering, Chukchi, and Beaufort seas. Can. Field Nat. 95:186–191.Google Scholar
  82. McAllister, D. E. 1975. Ecology of the marine fishes of arctic Canada. Proceedings Circumpolar Conference on Northern Ecology, vol. 2. National Research Council of Canada, Ottawa, pp. 49–65.Google Scholar
  83. McConville, M. J. 1985. Chemical composition and biochemistry of sea ice microalgae. In R. Homer (ed.), Sea Ice Biota. CRC Press, Boca Raton, Fla., pp. 105–129.Google Scholar
  84. McConville, M. J., and R. Wetherbee. 1983. The bottom-ice microalgal community from annual ice in the inshore waters of East Antarctica. J. Phycol. 19: 431–439.CrossRefGoogle Scholar
  85. MacGinitie, G. E. 1955. Distribution and ecology of the marine invertebrates of Point Barrow, Alaska. Smithson. Misc. Collect. 128:1201.Google Scholar
  86. McRoy, C. P., and J. J. Goering. 1974. The influence of ice on the primary productivity of the Bering Sea. In D. W. Hood and E. J. Kelley (eds.), Oceanography of the Bering Sea. Institute of Marine Science, University of Alaska, Fairbanks, pp. 403–421.Google Scholar
  87. Matheke, G. E. M., and R. Homer. 1974. Primary productivity of the benthic microalgae in the Chukchi Sea near Barrow, Alaska. J. Fish. Res. Board Can. 31:1779–1786.CrossRefGoogle Scholar
  88. Matsuda, T. 1961. Biological investigation during Antarctic Expedition voyage and at East and West Ongul Islands in Antarctica. Nankyoku Shiryo 11:159.Google Scholar
  89. Meguro, H. 1962. Plankton ice in the Antarctic Ocean. Antarct. Rec. 14:1192–1199.Google Scholar
  90. Meguro, H., K. Ito, and H. Fukushima. 1966. Diatoms and the ecological conditions of their growth in sea ice in the Arctic Ocean. Science 152:1089–1090.CrossRefGoogle Scholar
  91. Meguro, H., K. Ito, and H. Fukushima. 1967. Ice flora (bottom type): A mechanism for primary production in polar seas and the growth of diatoms in sea ice. Arctic 20:114–133.Google Scholar
  92. Meister, F. 1930. Mission du “Porquoi-Pas?” en 1929 sous le Commandement du Dr. J.-B. Charcot. Diatomes récoltées par R.-Ph. Doll-fus sur un glace flottante. Bull. Mus. Nat. Hist. Nat. (ser. 2), 2:329–330.Google Scholar
  93. Mel’nikov, I. A. 1976. Hydrobiological investigations in the central Arctic Ocean. Oceanology 16:314–315.Google Scholar
  94. Mel’nikov, I. A. 1979. Cryobiological observations in the Central Arctic Basin (method and some results of studies). Oceanology 19:93–96.Google Scholar
  95. Mel’nikov, I. A., and G. L. Pavlov. 1978. Characteristics of organic carbon distribution in the waters and ice of the Arctic Basin. Oceanology 18:163–167.Google Scholar
  96. Mitchell, J. G. 1982. Sea ice environments are indicated by archaeomonads. EOS 63:47.Google Scholar
  97. Mitchell, J. G., and M. W. Silver. 1982. Modern archaeomonads indicate sea-ice environments. Nature 296:437–439.CrossRefGoogle Scholar
  98. Mohr, J. L. 1959. Marine biological work. In V. Bushnell (ed.), Scientific Studies at Fletcher’s Ice Island T-3 (1952–1955). Geophysical Research Paper 63, pp. 82–103.Google Scholar
  99. Mohr, J. L., and J. Tibbs. 1963. Ecology of ice substrates. In Proceedings of the Arctic Basin Symposium. Tidewater Publishing Corp., Centreville, Maryland, pp. 245–249.Google Scholar
  100. Nansen, F. 1897. Farthest North, 2 vols. Harper & Brothers, Publishers, New York, 729 p.Google Scholar
  101. Nansen, F. 1906. Protozoa from the ice-floes of the North Polar Sea. Sci. Res. Norw. N. Polar Exped. 5(16)1–22.Google Scholar
  102. Niebauer, H. J., V. Alexander, and R. T. Cooney. 1981. Primary production at the eastern Bering Sea ice edge: The physical and biological regimes. In D. W. Hood and J. A. Calder (eds.), The Eastern Bering Sea Shelf: Oceanography and Resources, vol. 2. University of Washington Press, Seattle, pp. 763–772.Google Scholar
  103. Oradovskiy, S. G. 1972. Studies on the composition of nutrients in the ice of the Barents Sea. Trudy vses. nauchno-issled. Inst. morsk. ryb. Khoz. Okeanogr. 75:65–73. (In Russian; English summary.)Google Scholar
  104. Ostrup, E. 1895. Marine diatomeer fra estgrenland. Medd. Gronl. 18:395–476.Google Scholar
  105. Palmisano, A. C., and C. W. Sullivan. 1982. Physiology of sea ice diatoms. I. Response of three polar diatoms to a simulated summer-winter transition. J. Phycol. 18:489–498.CrossRefGoogle Scholar
  106. Perovich, D. K., and T. Grenfell. 1981. Laboratory studies of the optical properties of young sea ice. J. Glaciol. 27:331–346.Google Scholar
  107. Pett, R. J., G. P. Vickers, J. C. Acreman, and A. G. Ethier. 1983. A Seasonal Study of the Epontic and Planktonic Communities Near the Issungnak Artificial Island and McKinley Bay in the Canadian Beaufort Sea. Contract ISZ81–00026 for Department of Supply and Services Canada by Arctic Laboratories Ltd., Sydney. 89p.Google Scholar
  108. Poulin, M., and A. Cardinal. 1982a. Sea ice diatoms from Manitounuk Sound, southeastern Hudson Bay (Quebec, Canada). I. Family Naviculaceae. Can. J. Bot. 60:1263–1278.CrossRefGoogle Scholar
  109. Poulin, M., and A. Cardinal. 1982b. Sea ice diatoms from Manitounuk Sound, southeastern Hudson Bay (Quebec, Canada). II. Naviculaceae, genus Navicula. Can. J. Bot. 60:2825–2845.CrossRefGoogle Scholar
  110. Poulin, M., and A. Cardinal. 1983. Sea ice diatoms from Manitounuk Sound, southeastern Hudson Bay (Quebec, Canada). III. Cymbellaceae, Entomoneidaceae, Gomphonemataceae, and Nitzschiaceae. Can. J. Bot. 61:107–118.CrossRefGoogle Scholar
  111. Poulin, M., A. Cardinal, and L. Legendre. 1983. Réponse d’une communauté de diatomées de glace à un gradient de salinité (baie d’Hudson). Marine Biol. 76:191–202.CrossRefGoogle Scholar
  112. Price, I. R. 1981. Plants of the marine environment. In M. N. Clayton and R. J. King (eds.), Marine Botany: An Australasian Perspective. Longman Cheshire, Melbourne, pp. 15–24.Google Scholar
  113. Richardson, K., J. Beardall, and J. A. Raven. 1983. Adaptation of unicellular algae to irradiance: An analysis of strategies. New Phytol. 93:157–191.CrossRefGoogle Scholar
  114. Rodhe, W. 1955. Can plankton production proceed during winter darkness in subarctic lakes? Verh. Internat. Verein. Limnol. 12:117–12.Google Scholar
  115. Ross, R. 1954. Algae: Planktonic. Bot. Rev. 20:400–416.CrossRefGoogle Scholar
  116. Round, F. E. 1981. The Ecology of Algae. Cam- bridge University Press, Cambridge, 653 p.Google Scholar
  117. Saito, K., and A. Taniguchi. 1978. Phytoplankton communities in the Bering Sea and adjacent seas. II. Spring and summer communities in seasonally ice-covered areas. Astarte 11:27–35.Google Scholar
  118. Sancetta, C. 1981a. Oceanographic and ecologic significance of diatoms in surface sediments of the Bering and Okhotsk seas. Deep-Sea Res. 28:789–817.Google Scholar
  119. Sancetta, C. 1981b. Diatoms as hydrographic tracers: Example from Bering Sea sediments. Science 211:279–281.CrossRefGoogle Scholar
  120. Sancetta, C. 1982. Distribution of diatom species in surface sediments of the Bering and Okhotsk seas. Micropaleontology 28:221–257.CrossRefGoogle Scholar
  121. Schandelmeier, L., and V. Alexander. 1981. An analysis of the influence of ice on spring phytoplankton population structure in the south- east Bering Sea. Limnol. Oceanogr. 26:935–943.CrossRefGoogle Scholar
  122. Schell, D. M. 1980a. Foodweb and nutrient dynamics studies in nearshore Alaskan Beaufort Sea waters. Outer Continental Shelf Environmental Assessment Program, BLM/ NOAA. Environmental Assessment of the Alaskan Continental Shelf, Annual Reports of Principal Investigators 2:467–515.Google Scholar
  123. Schell, D.M. 1980b. Chemical overview of biological-physical process interactions. Outer Continental Shelf Environmental Assessment Program, BLM/NOAA. Arctic Project Bull. 29:25–31.Google Scholar
  124. Schrader, G. C., R. Homer, and G. F. Smith. 1982. An improved chamber for in situ measurement of primary productivity by sea ice algae. Can. J. Fish. Aquat. Sci. 39:522–524.CrossRefGoogle Scholar
  125. Shifrin, N. S., and S. W. Chisholm. 1981. Phytoplankton lipids: Interspecific differences and effects of nitrate, silicate and light-dark cycles. J. Phycol. 17:374–384.CrossRefGoogle Scholar
  126. Smith, A. E., and I. Morris. 1980. Pathways of carbon assimilation in phytoplankton from the Antarctic Ocean. Limnol. Oceanogr. 25:865–872.CrossRefGoogle Scholar
  127. Sullivan, C. W., A. C. Palmisano, S. Kottmeier, and R. Moe. 1982. Development of the sea ice microbial community in McMurdo Sound. Antarct. J. U.S. 17:155–157.Google Scholar
  128. Sutherland, P. C. 1852. Journal of a Voyage in Baffin’s Bay and Barrow Straits, in the Years 1850–1851, Performed by H. M. Ships “Lady Franklin” and “Sophia,” under the Command of Mr. William Penny, in Search of the Missing Crews of H. M. Ships “Erebus” and “Terror,” 2 vols. Longman, Brown, Green, and Longmans, London. 869 p.Google Scholar
  129. Takahashi, E. 1981. Loricate and scale-bearing protists from Lützow-Holm Bay, Antarctica. I. Species of the Acanthoecidae and the Centrohelida found at a site selected on the fast ice. Antarct. Rec. 73:1–22.Google Scholar
  130. Thomas, C. W. 1963. On the transfer of visible radiation through sea ice and snow. J. Glaciol. 4:481–484.Google Scholar
  131. Tibbs, J. F. 1967. On some planktonic Protozoa taken from the track of Drift Station ARLIS I, 1960–61. Arctic 20:247–254.Google Scholar
  132. Usachev, P. I. 1938. Biological analysis of ice-floes. C. R. (Dokl.) Acad. Sci. URSS 19:645–648.Google Scholar
  133. Usachev, P. I. 1949. The microflora of polar ice. Tr. Inst. Okeanol., Akad. Nauk SSSR 3:216–259. (In Russian.)Google Scholar
  134. Werner, D. 1977. Silicate metabolism. In D. Werner (ed.), The Biology of Diatoms. Blackwell Scientific Publications, Oxford, pp. 110–149.Google Scholar
  135. Whitaker, T. M. 1977. Sea ice habitats of Signy Island (South Orkneys) and their primary productivity. In G. A. Llano (ed.), Adaptations within Antarctic Ecosystems. Gulf Publishing Co., Houston, pp. 75–82.Google Scholar
  136. Wilce, R. T. 1967. Heterotrophy in arctic sublittoral sea weeds. Bot. Mar. 10:185–197.CrossRefGoogle Scholar
  137. Wood, E. J. F. 1964. Studies in microbial ecology of the Australasian region. V. Microbiology of some Australian estuaries. Nova Hedwigia 8:461–527.Google Scholar
  138. Zhuse, A. P., O. G. Kozlova, and V. V. Mukhina. 1967. Vidovoi sostav i zonal’noe rasprelelenie diatomei v poverkhnostnom sloe osodkov Tikhogo Okeana. Doki. Akad. Nauk SSSR 172:1183–1186. (In Russian.)Google Scholar

Copyright information

© Van Nostrand Reinhold 1989

Authors and Affiliations

  • Rita A. Horner

There are no affiliations available

Personalised recommendations