Skip to main content

Model Systems and Structure, Function and Reactivity Relationships in Transition Metal-Containing Biopolymers

  • Chapter
Metal-Containing Polymeric Materials
  • 174 Accesses

Abstract

Metal complexes are at the heart of many biological processes. Remarkably few structural motifs are used by Nature to accomplish such diverse functions as oxidation and reduction, hydrolysis and condensation, transport of electrons and small molecules, and transformations of chemical energy into electrical and mechanical energy. One of the challenges of bioinorganic chemistry is to relate, for a particular structural motif such as a heme group, the structural features of not only the metal center but also the surroundings to the function and reactivity of the metalloprotein. While much effort has been devoted to relating the stereochemistry of the active site of metalloproteins to thermodynamic aspects of function, there is increasing interest in the stereochemical basis of kinetic aspects of protein function, such as rates of electron transfer, rates of ligand binding and reaction mechanisms for enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a group of reviews on metal-dioxygen chemistry, see: Chem. Rev. 94(3): 1994.

    Google Scholar 

  2. For a recent textbook on aspects of bioinorganic chemistry, see for example: “Bioinorganic Chemistry,” I. Bertini, H.B. Gray, SJ. Lippard, and J.S. Valentine, eds., University Science Books, Mill Valley, CA (1994).

    Google Scholar 

  3. For a recent textbook on principles of bioinorganic chemistry, see: J. Berg and S J. Lippard, “Principles of Bioinorganic Chemistry,” University Science Books, Mill Valley, CA (1994).

    Google Scholar 

  4. For a group of reviews concentrating on structure and function of metalloproteins, see for example:Adv. Protein Chem. 42: (1991).

    Google Scholar 

  5. G.B. Jameson and J.A. Ibers, Biological and synthetic dioxygen carriers, in: “Bioinorganic Chemistry,” I. Bertini, H.B. Gray, S.J. Lippard, and J.S. Valentine, eds., University Science Books, Mill Valley, CA, pp 167–252 (1994).

    Google Scholar 

  6. J.S. Valentine, Dioxygen reactions, in: “Bioinorganic Chemistry,” I. Bertini, H.B. Gray, S.J. Lippard, and J.S. Valentine, eds., University Science Books, Mill Valley, CA, pp 253–313, (1994).

    Google Scholar 

  7. See also ref. 96.

    Google Scholar 

  8. M. Momenteau and C.A. Reed, Chem. Rev. 94: 659–698 (1994).

    CAS  Google Scholar 

  9. B.A. Springer, S.S. Sligar, J.S. Olson, and G.N. Phillips Jr., Chem. Rev. 94: 699–714 (1994).

    CAS  Google Scholar 

  10. T. Li, M.L. Quillin, and G.N. Phillips Jr., Biochemistry 33: 1433–1446 (1994).

    CAS  Google Scholar 

  11. T.E. Carver, R.E. Brantley Jr., E.W. Singletom, R.M. Arduini, M.L. Quilin, G.N. Phillips, and J.S. Olson, J. Biol. Chem. 267: 14443–14450.

    Google Scholar 

  12. G.B. Jameson and J.A. Ibers, Comments Inorg. Chem. 2: 97–226 (1993).

    Google Scholar 

  13. G.B. Jameson, W.T. Robinson, and J.A. Ibers, Structural results for model compounds of significance in hemoglobin chemistry, in: “Hemoglobin and Oxygen Binding,” C. Ho, ed., Elsevier North Holland Inc., Amsterdam, pp 25–35 (1982).

    Google Scholar 

  14. K. Kim and J.A. Ibers,. J. Am. Chem. Soc. 113: 6077–6081(1991).

    CAS  Google Scholar 

  15. K. Kim, J. Fettinger, J.L. Sessler, M. Cyr, J. Hugdahl, J.P. Collman, and J.A. Ibers, J. Am. Chem. Soc. 111: 403–405 (1989).

    CAS  Google Scholar 

  16. L. Que Jr. and A.E. True, Prog. Inorg. Chem. 38: 98–200 (1990).

    Google Scholar 

  17. J.B. Vincent, G.L. Olivier-Lilley, and B.A. Averill, Chem. Rev. 90: 1447–1467(1990).

    CAS  Google Scholar 

  18. D.M. Kurtz Jr. Chem. Rev. 90: 585–606 (1990).

    CAS  Google Scholar 

  19. E.T. Adman, Adv. Protein Chem. 42: 144–197 (1991).

    Google Scholar 

  20. K.D. Karlin and Y. Gultneh, Prog. Inorg. Chem. 35: 219–327 (1987).

    CAS  Google Scholar 

  21. B.P. Murray, Coord. Chem. Rev. 124: 63–105 (1993).

    Google Scholar 

  22. E.I. Solomon, F. Tuczek, D.E. Root, and C.A. Brown, Chem. Rev. 94: 827–856 (1994).

    CAS  Google Scholar 

  23. G.R. Moore and G.W. Pettigrew, “Cytochromes c: Evolutionary, Structural and Physicochemical Aspects,” Springer-Verlag, Berlin (1990).”

    Google Scholar 

  24. E.I. Steifel and G.N. George, Ferrodoxins, hydrogenases and nitrogenases: metal-sulfide proteins, in:’’Bioinorganic Chemistry,’’ I. Bertini, H.B. Gray, S.J. Lippard, and J.S. Valentine, eds., University Science Books: Mill Valley, CA, pp 253–313 (1993).

    Google Scholar 

  25. R.H. Holm, S. Ciurli, and J.A. Weugel, Prog. Inorg. Chem. 38: 1–74 (1990).

    CAS  Google Scholar 

  26. J.B. Howard and D.C. Rees, Adv. Protein Chem. 42: 199–280 (1991).

    CAS  Google Scholar 

  27. A.L. Feig and S.J. Lippard, Chem. Rev. 94: 759–805 (1994).

    CAS  Google Scholar 

  28. A.C. Rosenzweig and S.J. Lippard, Acc. Chem. Res. 27: 229–236 (1994).

    CAS  Google Scholar 

  29. R.E. Stenkamp, Chem. Rev. 94: 715–726 (1994).

    CAS  Google Scholar 

  30. S. Sheriff, W.A. Hendrickson, and J.L. Smith, J. Mol. Biol. 197: 273–296 (1987).

    CAS  Google Scholar 

  31. S.J. Lippard, Angew. Chem., Int. Ed. Eng. 27: 344–361 (1988).

    Google Scholar 

  32. Z. Wang, L.-J. Ming, L. Que Jr., J.B. Vincent, M.W. Crowder, and B.A. Averill, Biochemistry 31: 5263–5268 (1992).

    CAS  Google Scholar 

  33. P. Nordlund and H. Eklund, J. Mol. Biol. 232: 123–164 (1993).

    CAS  Google Scholar 

  34. P. Nordlund, B.-M. Sjöberg, and H. Eklund, Nature 345: 593–598 (1990).

    CAS  Google Scholar 

  35. A.C. Rosenzweig, C.A. Frederick, S.J. Lippard, and P. Nordlund, Nature 366: 537–543 (1993).

    CAS  Google Scholar 

  36. J. Kuriyan, S. Wilz, M. Karplus, and G.A. Petsko, J. Mol. Biol. 192: 133–154 (1986).

    CAS  Google Scholar 

  37. X. Cheng and B.P. Shoenbom, J. Mol. Biol. 220: 381–399 (1991).

    CAS  Google Scholar 

  38. L. Powers, J.L. Sessler, G.L. Woolery, and B. Chance, Biochemistry 23: 5519–5523 (1984).

    CAS  Google Scholar 

  39. A. Bianconi, A. Congiu-Castellano, P.J. Durham, S.S. Hasnain, and S. Phillips, Nature, 318: 685–687 (1985).

    CAS  Google Scholar 

  40. Many biochemistry textbooks show Fe-CO moieties as bent as Fe-00 moieties (120°).

    Google Scholar 

  41. K.S. Murray, Coord. Chem. Rev. 12: 1–35 (1974).

    CAS  Google Scholar 

  42. J. Sanders-Loehr, Binuclear iron proteins, in: “Iron Carriers and Iron Proteins,” T.M. Loehr, ed., VCH, New York, Vol. 5, pp 373–476 (1989).

    Google Scholar 

  43. I.M. Klotz, and D.M. Kurtz Jr., Acc. Chem. Res. 17: 16–22 (1984).

    CAS  Google Scholar 

  44. D.E. Wilcox, J.R. Long, and E.I. Solomon, J. Am. Chem. Soc. 106: 2186–2194 (1984).

    CAS  Google Scholar 

  45. N. Kitajima and Y. Moro-oka, Chem. Rev. 94: 737–757 (1994).

    CAS  Google Scholar 

  46. N. Kitajima, K. Fujisawa, C. Fujimoto, Y. Moro-oka, S. Hashimoto, T. Kitagawa, K. Toriumi, K. Tatsumi, and A. Nakamura, J. Am. Chem. Soc. 114: 1277–1291 (1992).

    CAS  Google Scholar 

  47. K.A. Magnus, H. Ton-Hat, and J.E. Carpenter, Chem. Rev. 94: 727–735 (1994).

    CAS  Google Scholar 

  48. G.B. Jameson, F.S. Molinaro, J.A. Ibers, J.P. Collman, J.I. Brauman, E. Rose, and K.S. Suslick, J. Am. Chem. Soc. 102: 3224–3237 (1980).

    CAS  Google Scholar 

  49. J.H. Wang, J. Am. Chem. Soc. 80: 3168–3169 (1958).

    CAS  Google Scholar 

  50. T.G. Traylor, Acc. Chem. Res. 14: 102–109 (1981).

    CAS  Google Scholar 

  51. D.L. Anderson, D.J. Weschler, and F. Basolo, J. Am. Chem. Soc. 96: 5599–5600 (1974).

    CAS  Google Scholar 

  52. G.C. Wagner and R.J. Kassner, J. Am. Chem. Soc. 96: 5593–5595 (1974).

    Google Scholar 

  53. W.S. Brinigar, C.K. Chang, J. Geibel, and T.G. Traylor, J. Am. Chem. Soc. 96: 5597–5599 1974).

    CAS  Google Scholar 

  54. J. Almog, J.E. Baldwin, R.L. Dyer, J. Huff, and C.J. Wilkerson, J. Am. Chem. Soc. 96: 5600– 5601 (1974).

    Google Scholar 

  55. J.P. Collman, R.R. Gagne, T.R. Halbert, J.C. Marchon, and C.A. Reed, J. Am. Chem. Soc. 95: 7868– 7870 (1973).

    Google Scholar 

  56. (a) J.B. Weiss, Nature 202: 83–84 (1964); ibid. 203: 183 (1964).

    Google Scholar 

  57. L. Pauling, Nature 203: 182–183 (1964).

    CAS  Google Scholar 

  58. H.B. Gray, Adv. Chem. Ser. 100: 365–389 (1971).

    Google Scholar 

  59. M.F. Perutz, Nature 228: 726–739 (1970).

    CAS  Google Scholar 

  60. B.M. Hoffman, and D.H. Petering, Proc. Natl. Acad. Sci, USA 67: 637–643 (1970).

    CAS  Google Scholar 

  61. E.C. Niederhoffer, J.H. Timmons, and A.E. Martell, Chem. Rev. 84: 137–203 (1984).

    CAS  Google Scholar 

  62. G.A. Rodley and W.T. Robinson, Nature 235: 438–439 (1972).

    CAS  Google Scholar 

  63. J.P. Collman, R.R. Gagne, C.A. Reed, W.T. Robinson, and G.A. Rodley, Proc. Natl. Acad. Sci,USA 71: 1326–1329 (1974).

    CAS  Google Scholar 

  64. G.B. Jameson, G.A. Rodley, W.T. Robinson, R.R. Gagne, C.A. Reed, and J.P. Collman, Inorg. Chem. 17: 850–857 (1978).

    CAS  Google Scholar 

  65. G.B. Jameson, F.S. Molinaro, J.A. Ibers, J.P. Collman, J.I. Brauman, E. Rose, and K.S. Suslick, J. Am. Chem. Soc. 100: 6769–6770 (1978).

    CAS  Google Scholar 

  66. S.E.V. Phillips, Nature 273: 247–248 (1978).

    CAS  Google Scholar 

  67. W. Steigemann and E. Weber, J. Mol. Biol, 127: 309–338 (1979).

    CAS  Google Scholar 

  68. B. Shaanan, B. J. Mol. Biol. 171: 31–59 (1983).

    Google Scholar 

  69. A Brzozowski, Z. Derewenda, E. Dodson, G. Dodson, M. Grabowski, R. Liddington, T. Skarźyński, and D. Vallely, Nature 307: 74–76 (1984).

    CAS  Google Scholar 

  70. A. Araone, P. Rogers, N.V. Blough, J.L. McGourty, and B.M. Hoffman, J. Mol. Biol. 188: 693– 706 (1986).

    Google Scholar 

  71. B. Luisi, B. Liddington, G. Fermi, and N. Shibayama, J. Mol. Biol. 214: 7–14 (1990).

    CAS  Google Scholar 

  72. R. Liddington, Z. Derenda, G. Dodson, and D. Harris, Nature 331: 725–728 (1988).

    CAS  Google Scholar 

  73. I. Schlichting, J. Berendzen, G.N. Phillips Jr., and R.M. Sweet, Nature 371: 808–812 (1994).

    CAS  Google Scholar 

  74. T.-Y. Teng, V. Srajer, and K. Moffat, Nature Struct. Biol. 1: 701–705 (1994).

    CAS  Google Scholar 

  75. S.-M. Peng and J.A. Ibers, J. Am. Chem. Soc. 98: 8032–8036 (1976).

    CAS  Google Scholar 

  76. J.A. Ibers and R.H. Holm, Science 209: 223–235 (1980).

    CAS  Google Scholar 

  77. S.G. Boxer, Nature Struct. Biol. 1: 226 (1994).

    Google Scholar 

  78. W.R. Scheidt and Y.J. Lee, Structure and Bonding, 1987: 1–70 (1987).

    Google Scholar 

  79. I. Bytheway and M.B. Hall, Chem. Rev. 94: 639–658 (1994).

    CAS  Google Scholar 

  80. J.P. Collman, R.R. Gagne, H.B. Gray, and J.W. Hare, J. Am. Chem. Soc. 96: 6522–6224 (1974).

    CAS  Google Scholar 

  81. A. Dedieu, M.-M. Rohmer, M. Benard, and A. Veillard, J. Am. Chem. Soc. 98: 3717–3718 (1976).

    CAS  Google Scholar 

  82. M. Cerdonio, A. Congiu-Castellano, F. Mogno, B. Pispisa, G.L. Romani, and S.Vitale, Proc. Natl. Acad. Sci, USA 74: 398–400 (1977).

    CAS  Google Scholar 

  83. L. Pauling and C.D. Coryell, Proc. Natl. Acad. Sci, USA 22: 210–216 (1936).

    CAS  Google Scholar 

  84. Z.S. Herman and G.H. Loew, J. Am. Chem. Soc. 102: 1815–1821 (1980).

    CAS  Google Scholar 

  85. (f) A. Dedieu, M.-M. Rohmer, and A. Veillard, in: “Metal Ligand Interactions in Organic Chemistry and Biochemistry,” Reidel, part 2 pp 101–130 (1977).

    Google Scholar 

  86. W.A. Goddard III and B.D. Olafson, Ann. N.Y. Acad. Sci. 367: 419–433 (1981).

    CAS  Google Scholar 

  87. L. Pauling, Proc. Natl. Acad. Sci, USA 74: 2612 (1977s).

    CAS  Google Scholar 

  88. B. Boso, P.G.Debrunner, G.C. Wagner, and T. Inubushi, Biochim. Biophys. Acta 791: 244–251 (1984).

    CAS  Google Scholar 

  89. J.S. Philo, U. Dreyer, and T.M. Schuster, Biochemistry 23: 865–873 (1984).

    CAS  Google Scholar 

  90. J.P. Savicki, G. Lang, and M Ikeda-Saito, Proc. Natl. Acad. Sci, USA 81: 5417–5419 (1984).

    CAS  Google Scholar 

  91. M. Cerdonio, S. Morante, D. Torresani, S. Vitale, A. De Young, R.W. Noble, Proc. Natl. Acad. Sci, USA 82: 102–103 (1985).

    CAS  Google Scholar 

  92. J.O. Alben, W.H. Fuchsman, C.A. Beaudreau, and W.S. Caughey, Biochemistry 1: 624–635 1968).

    Google Scholar 

  93. G.S. Hammond and C.-S. Wu, Adv. Chem. Ser. 1: 186–207 (1968).

    Google Scholar 

  94. J.P. Collman, Acc.Chem. Res. 10: 265–272 (1977).

    CAS  Google Scholar 

  95. D.-H. Chin, G.N. La Mar, and A.L. Balch, J. Am. Chem. Soc. 102: 4344–4350 (1980).

    CAS  Google Scholar 

  96. I.R Paeng, H. Shiwaku, and K. Nakamoto, J. Am. Chem. Soc. 110: 1995–1996 (1988).

    CAS  Google Scholar 

  97. R.E. Brantley Jr., S.J. Smerdon, A.J. Wilkinson, E.W. Singleton, and J.S. Olson, J. Biol. Chem.268: 6995–7010 (1993).

    CAS  Google Scholar 

  98. Q.H. Gibson and M.H. Smith, Proc. Roy. Soc. London, Ser B. 163: 206–214 (1965).

    CAS  Google Scholar 

  99. T. Okazaki and J.B. Wittenberg, Biochim. Biophys. Acta 111: 503 (1965).

    CAS  Google Scholar 

  100. A.P. Klock, J. Yang, F.S. Mathews, and D.E. Goldberg, J. Biol. Chem. 268: 17669–17671 (1993).

    Google Scholar 

  101. M. Ikeda-Saito, M.Brunori, and T. Yonetani, Biochim. Biophys. Acta 533: 173–180 (1978).

    CAS  Google Scholar 

  102. T. Imamura, A. Riggs, and Q.H. Gibson, J. Biol. Chem. 247: 521–526 (1972).

    CAS  Google Scholar 

  103. J.B.Wittenberg, C.A. Appleby, and B.A. Wittenberg, J. Biol. Chem. 247: 527–531 (1972s).

    CAS  Google Scholar 

  104. C.A. Appleby, Biochim. Biophys. Acta 60: 226(1962).

    CAS  Google Scholar 

  105. J.B. Wittenberg, F.J. Bergersen, C.A. Appleby, and G.L. Turner, J. Biol. Chem. 249: 4057–4066 (1974).

    CAS  Google Scholar 

  106. N. Alberding, R.H. Austin, K.W. Beeson, S.S. Chan, L. Eisenstein, H. Frauenfelder, and T.M. Nordlund, Science 192:1002–1004 (1976).

    CAS  Google Scholar 

  107. S. Dasgupta and T.G. Spiro, Biochemistry 25: 5941–5948 (1986).

    CAS  Google Scholar 

  108. M.R. Chance, J.L. Parkhurst, G.L. Woolery, and B. Chance, J. Biol. Chem. 261: 5689–5692 (1986).

    CAS  Google Scholar 

  109. G.B. Jameson and R.S. Drago, J. Am. Chem. Soc. 107: 3017–3020 (1985).

    CAS  Google Scholar 

  110. D. Lavalette, C. Tétreau, M. Mispelter, M. Momenteau, and J.-M. Lhoste, Eur. J. Biochem. 145: 555–565 (1984).

    CAS  Google Scholar 

  111. M. Momenteau and D. Lavalette, J. Chem. Soc., Chem. Commun. 341–343 (1982)

    Google Scholar 

  112. J. Mispelter, M. Momenteau, D. Lavalette, and J.-M. Lhoste, J. Am. Chem. Soc. 105: 5165–5166 (1983).

    CAS  Google Scholar 

  113. I.P. Gerothanassis, M. Momenteau, and B. Loock, J. Am. Chem. Soc. 111: 7006–7012 (1989).

    CAS  Google Scholar 

  114. K. Nagai, B. Luisi, D. Shih, G. Miyazaki, K. Imai, C. Poyart, A. De Young, L. Kwiatkowsky, R.W. Noble, S.-H. Lin, and N.-T. Yu, Nature 329: 858–860 (1987).

    CAS  Google Scholar 

  115. J. S. Olson, A. J. Mathews, R. J. Rohlfs, B. A. Springer, K. D. Egeberg, S. G. Sligar, J. Tame, J.-P. Renaud, and K. Nagai, Nature 336: 265–266 (1988).

    CAS  Google Scholar 

  116. M. Bolognesi, A. Coda, F. Frigerio, G. Gatti, P. Ascenzi, and M. Brunori, J. Mol. Biol. 213:621–625 (1990).

    CAS  Google Scholar 

  117. J.P. Collman, J.I. Brauman, B.L. Iveson, J.L. Sessler, J.M. Morris, and Q.H. Gibson, J. Am.Chem. Soc. 105: 3052–3064 (1983).

    CAS  Google Scholar 

  118. J.P. Collman, Brauman, T.R. Halbert, and K.S. Suslick, Proc. Natl. Acad. Sci., USA 73: 3333– 3337 (1976).

    CAS  Google Scholar 

  119. See reference 4 for a comprehensive and up-to-date compilation of sterically hindered and non-hindered model systems.

    Google Scholar 

  120. M.L. Quillin, R.M. Arduini, J.S. Olson, and G.N. Phillips Jr., J. Mol. Biol. 234: 140–155 (1993).

    CAS  Google Scholar 

  121. T. Li, M.L. Quillin, G.N. Phillips Jr., and J.S. Olson, Biochemistry 33: 1433–1446 (1994).

    CAS  Google Scholar 

  122. M.C.M. Chung and H.D. Ellerton, Progr. Biophys. Mol. Biol. 35: 53–102 (1979).

    CAS  Google Scholar 

  123. W.E. Royer Jr., J. Mol. Biol. 235: 657–681 (1994).

    CAS  Google Scholar 

  124. P.R. Kolatkar, M.L. Hackert, and A.F. Riggs, J. Mol. Biol. 237: 87–97 (1994).

    CAS  Google Scholar 

  125. (a) E. Antonini and M. Brunori, “Hemoglobin and Myoglobin in Their Reactions with Ligands,” North Holland, 1971.

    Google Scholar 

  126. K. Imai, “Allosteric Effects in Hemoglobin,” Cambridge University Press (1982).

    Google Scholar 

  127. T. Ochiai, S. Hoshina, and I. Usuki, Biochim. Biophys. Acta 1203: 310–314 (1993).

    CAS  Google Scholar 

  128. J. Monod, J. Wyman, and J.-P.Changeux, J. Mol. Biol. 12: 88–118 (1965).

    CAS  Google Scholar 

  129. M.F. Perutz, G. Fermi, B. Luisi, B.Shaanan, and R.C. Liddington, Acc. Chem. Res. 20: 307–321 (1987).

    Google Scholar 

  130. J.Baldwin and C. Chotia J. Mol. Biol. 129: 175–195 (1979).

    CAS  Google Scholar 

  131. G.E.O. Borgstahl, P.H. Rogers, and A. Amone, J. Mol. Biol. 236: 817–830 (1994).

    CAS  Google Scholar 

  132. G.E.O. Borgstahl, P.H. Rogers, and A. Amone, J. Mol. Biol. 236: 831–843 (1994).

    CAS  Google Scholar 

  133. There is a report in the review literature70 for an R-state deoxyhemoglobin structure.

    Google Scholar 

  134. G.K. Ackers, and F.R. Smith, Ann. Rev. Biophys. Biophys.Chem. 16: 583–609 (1987).

    CAS  Google Scholar 

  135. G.K. Ackers, Biophys. Chem. 37: 371–382 (1990).

    CAS  Google Scholar 

  136. V.J. LiCata, P.M. Dalessio, and G.K. Ackers, Proteins: Struct. Funct. Genet. 17: 279–296 (1993).

    CAS  Google Scholar 

  137. M.M. Silva, P.H. Rogers, and A. Amone, J. Biol. Chem. 267: 17248–17256 (1992).

    CAS  Google Scholar 

  138. M.L. Doyle, G. Lew, G.J. Turner, D. Rucknagel, and G.K. Ackers, Proteins: Struct. Funct. Genet. 14: 351–362 (1992).

    CAS  Google Scholar 

  139. F.R. Smith, E.E. Lattman, and C.W. Carter Jr. Proteins 10: 81–91 (1991).

    CAS  Google Scholar 

  140. J. Janin and S.J. Wodak, Proteins: Struct. Funct. Genet. 15: 1–4 (1993).

    CAS  Google Scholar 

  141. G.J Turner, F. Galacteros, M.L.Doyle, B. Hedlund, D.W. Pettigrew, B.W. Turner, F.R. Smith, W. Moo-Penn, D.L. Rucknagel, and G.K. Ackers, Proteins: Struct. Funct. Genet. 14: 333–350 (1992).

    CAS  Google Scholar 

  142. S. Balasubramanian, D.G. Lambright, J.H. Simmons, S.J. Gill, and S.G. Boxer, Biochemistry 33: 8355–8360 (1994).

    CAS  Google Scholar 

  143. T.B. Freedman, J.S. Loehr, and T.M. Loehr, J. Am. Chem. Soc 98: 2809–2815 (1976).

    CAS  Google Scholar 

  144. K.D. Karlin and Z. Tyeklar, Adv. Inorg. Biochem. 9: 123 (1993).

    Google Scholar 

  145. K.D. Karlin and Y. Gultneh, Progr. Inorg. Chem. 35: 219–327 (1987).

    CAS  Google Scholar 

  146. D.C. Bradley, J.S. Ghotra, F.A. Hart, M.B. Hursthouse, and P.R. Raithby, J. Chem. Soc. Dalton Trans. 1166–1172 (1977).

    Google Scholar 

  147. R. Haegele and J.C.A. Boeyens, J. Chem. Soc. Dalton Trans. 648–650 (1977).

    Google Scholar 

  148. N. Kitajima, Adv. Inorg. Chem. 39: 1–77 (1992).

    CAS  Google Scholar 

  149. T.N. Sorrell, Tetrahedron 45: 3–68 (1989).

    CAS  Google Scholar 

  150. Z. Zanello, S. Tamburini, P.A. Vigato, and G.A. Mazzocchin, Coord. Chem. Rev. 77: 165–273 (1987).

    CAS  Google Scholar 

  151. K.D. Karlin, American Chemical Sociey Meeting, Washington, DC, August 21–25, Division of Inorganic Chemistry, paper 310 (1994).

    Google Scholar 

  152. See reference 25 for a discussion on the active site of molluscan hemocyanin and tyrosinase.

    Google Scholar 

  153. E.T. Adman, Adv. Protein Chem. 42: 144–157 (1991).

    Google Scholar 

  154. W.H. Armstrong and S.J. Lippard, J. Am. Chem. Soc. 105: 4837–4838 (1983).

    CAS  Google Scholar 

  155. K. Wieghardt, J. Pohl, and W. Gebert, Angew. Chem., Int. Ed. Engl. 22: 727 (1983).

    Google Scholar 

  156. D.H. Busch and N.W. Alcock, Chem.Rev. 94: 585–623 (1994).

    CAS  Google Scholar 

  157. M.H. Dickman and M.T. Pope, Chem.Rev. 94: 569–584 (1994).

    CAS  Google Scholar 

  158. P. Gomez-Romero, G.C. De Fotis, and G.B. Jameson, J. Am. Chem. Soc. 108: 851–853 (1986).

    CAS  Google Scholar 

  159. P. Gómez-Romero, E.H. Witten, W.M. Reiff, G. Backes, J. Sanders-Loehr, and G.B. Jameson, J. Am. Chem. Soc. 111: 9039–9047 (1989).

    Google Scholar 

  160. P. Gómez-Romero, E.H. Witten, W.M. Reiff, and G.B. Jameson, G. B. Inorg. Chem. 29: 5211–5217 (1990).

    Google Scholar 

  161. P. Gómez-Romero, Ph.D. Thesis, Georgetown University, Washington, DC (1987).

    Google Scholar 

  162. J. Sanders-Loehr, W.D. Wheeler, A.K. Shiemke, B.A. Averill, and T.M. Loehr, J. Am. Chem. Soc. 111: 8084–8093 (1989).

    CAS  Google Scholar 

  163. M.J. Maroney, American Chemical Sociey Meeting, Washington, DC, August 21–25, Division of Inorganic Chemistry, paper 335 (1994).

    Google Scholar 

  164. M.W. Calhoun, J.W. Thomas, and R.B. Gennis, Trends Biochem. Sci. 19: 325–330 (1994).

    CAS  Google Scholar 

  165. For an issue devoted to cytochrome c oxidase, see: J. Bioenerg. Biomembr. 25(2): (1993).

    Google Scholar 

  166. B.G. Malmström, Acc. Chem. Res. 26: 332–337 (1993).

    Google Scholar 

  167. T. Ogura, S. Takahashui, S.Hirota, K. Shinzawa-Itoh, S. Yoshikawa, E.H. Appleman, and T.Kitagawa, J. Am. Chem. Soc. 115: 8527–8536 (1993).

    CAS  Google Scholar 

  168. A. Messerschmidt, in: “Bioinorganic Chemistry of Copper,” K.D. Karlin and Z. Tyeklar, eds., Chapman & Hall, New York, pp478–484 (1993).

    Google Scholar 

  169. A. Messerschmidt, H. Leucke, and R. Huber, J. Mol. Biol. 230: 997–1012 (1993).

    CAS  Google Scholar 

  170. A. Messerschmidt and R. Huber, Eur. J. Biochem. 341–347 (1990).

    Google Scholar 

  171. J.C. Severns and D.R. McMillin, Biochemistry 29: 8592–8597 (1990).

    CAS  Google Scholar 

  172. See reference 82(a).

    Google Scholar 

  173. A. Nanthakumar, S. Fox, N.N. urthy, K.D. Karlin, N. Ravi, B.H. Huynh, E.P. Day, K.S. Hagen, and N.J. Blackburn, J. Am. Chem. Soc. 115: 8513–8514 (1993).

    CAS  Google Scholar 

  174. S. Lee and R.H. Holm, J. Am. Chem. Soc. 115: 11789–11798 (1993).

    CAS  Google Scholar 

  175. R.E. Stenkamp and L.H. Jensen, Adv. Inorg. Biochem. 1: 219 (1979).

    CAS  Google Scholar 

  176. R.E. Stenkamp, L.C. Sieker, and L.H. Jensen, J. Am. Chem. Soc. 106: 618–622 (1984).

    CAS  Google Scholar 

  177. M.A. Holmes and R.E. Stenkamp, J. Mol. Biol. 220: 723–737 (1991).

    CAS  Google Scholar 

  178. M.A. Holmes, I. Le Trong, S. Turley, L.C. Sieker, and R.E. Stenkamp, J. Mol. Biol. 218: 583–593 (1991).

    CAS  Google Scholar 

  179. D.H. Ohlendorf, J.D. Lipscomb, P.C. Weber, Nature 336: 403–405 (1988).

    CAS  Google Scholar 

  180. L. Que Jr., The catechol dioxygenases, in: “Iron Carriers and Iron Proteins,” T.M. Loehr, ed., VCH, New York, Vol. 5, pp 467–524 (1989).

    Google Scholar 

  181. E.N. Baker, B.F. Anderson, H.M.Baker, M. Haridas, G.B. Jameson, G.E. Norris, S.V. Rumball, and C.A. Smith, Int. J. Biol. Macromol. 13: 122–129 (1991).

    CAS  Google Scholar 

  182. D.C. Harris and P. Aisen, Physical biochemistry of the transferrins, in: “Iron Carriers and Iron Proteins,” T.M. Loehr, ed., VCH, New York, Vol. 5, pp 239–351 (1989).

    Google Scholar 

  183. P. Aisen, Physical biochemistry of the transferrins: update, 1984–1988, in: “Iron Carriers and Iron Proteins,” T.M. Loehr, ed., VCH, New York, Vol. 5, pp 239–351 (1989).

    Google Scholar 

  184. D.N.Kutrtz Jr. and W.C. Stevens, J. Am. Chem. Soc. 106: 1523–1524 (1984).

    Google Scholar 

  185. S. Yan, D.D. Cox, L.L. Pearce, C. Juarez-Garcia, L. Que Jr., J.H. Zhang, and C.J. O’Connor, Inorg. Chem. 28: 2507–2509 (1989).

    CAS  Google Scholar 

  186. R.C. Holz, T.E. Elgren, L.L. Pearce, J.H. Zhang, C.J. O’Connor, and L. Que Jr., Inorg. Chem. 32: 5844–5850 (1993).

    CAS  Google Scholar 

  187. R.E. Norman, R.C. Holz, J.H. Zhang, C.J. O’Connor, S. Menage, and L. Que Jr. Inorg. Chem. 29: 4629–4637 (1990).

    CAS  Google Scholar 

  188. A. Hazell, K.B. Jensen, C.J. McKenzie, and H. Tofitlund, Inorg. Chem. 33: 3127–3134 (1994).

    CAS  Google Scholar 

  189. E.C. Wilkinson, Y. Dong, and L. Que Jr., J. Am. Chem. Soc. 116: 8394–8395 (1994).

    CAS  Google Scholar 

  190. H.P. Berends and D.W. Stephan, Inorg. Chem, 26: 749–754 (1987).

    CAS  Google Scholar 

  191. H.P. Berends and D.W. Stephan, Inorg. Chim Acta, 99: L53–L54 (1987).

    Google Scholar 

  192. M. Suzuki, A. Uehara, and K. Endo, Inorg. Chim. Acta 123: L9–L10 (1986).

    CAS  Google Scholar 

  193. M. Suzuki, H. Osho, A. Uehara, K. Endo, M. Yanaga, S. Kida, and K. Saito, Bull. Chem. Soc. Japan 61: 3907–3913 (1988).

    CAS  Google Scholar 

  194. A. Ben-Hussein, N.L. Morris, G.J. Long, P. Gomez-Romero, and G.B. Jameson, unpublished structures of various salts of compounds described in reference 102(a).

    Google Scholar 

  195. A.S. Borovik, V. Papaefithymiou, L.F. Taylor, O.P. Anderson, and L. Que Jr., J. Am. Chem. Soc. 111:6183–6195 (1989).

    CAS  Google Scholar 

  196. M.S. Mashuta, R.J. Webb, J.K. McKusker, E.A. Schmitt, K.J. Oberhausen, and J.F. Richardson, R.M. Buchanan, and D.N. Hendrickson, J. Am.Chem. Soc. 114: 3815–3827 (1992).

    CAS  Google Scholar 

  197. M.S. Nasir, K.D. Karlin, D. McGowty, and J. Zubieta, J. Am. Chem. Soc. 113: 698–700 (1991).

    CAS  Google Scholar 

  198. J.D. Crane, D.E. Fenton, J.-M. Latour, and A. Smith, J. Chem. Soc., Dalton Trans. 2979–2987 (1991).

    Google Scholar 

  199. E. Bernard, W. Moneta, J. Laugier, S. Chardon-Noblat, A. Deronzier, J.-P. Tuchagues, and J.-P. Latour, Angew Chem, Int. Ed. Engl. 33: 887–889 (1994).

    Google Scholar 

  200. P. Kamaras, M.C. Cajulis, M. Rapta, G.A. Brewer, and G.B. Jameson, J. Am. Chem. Soc. 116: 10334–10335 (1994).

    CAS  Google Scholar 

  201. P. Kamaras, Ph. D. Dissertation, Georgetown University, Washington, DC (1994).

    Google Scholar 

  202. P. Gómez-Romero, N. Casan-Pastor, A. Ben Hussein, and G.B. Jameson, J. Am. Chem. Soc. 110: 1988–1990 (1988).

    Google Scholar 

  203. R.M. Buchanan, American Chemical Sociey Meeting, Washington, DC, August 21–25, Division of Inorganic Chemistry, paper 213 (1994).

    Google Scholar 

  204. (a) H. Adams, G. Candeland, J.D. Crane, D.E. Fenton, and A. Smith, J. Chem. Soc., Chem. Commun. 93–95 (1990).

    Google Scholar 

  205. A. Bencini, D Gatteschi, C. Zanchii, O. Kahn, M. Verdaguer, and M. Julve, Inorg. Chem. 25: 3181–3183 (1986).

    CAS  Google Scholar 

  206. M. Julve, M. Verdaguer, A. Gleizes, M. Piloche-Levisalles, and O. Kahn, Inorg. Chem. 23: 3808–3818 (1984).

    CAS  Google Scholar 

  207. G. Cros, J.-P. Laurent, and F. Dahan, Inorg. Chem. 26: 596–599 (1987).

    CAS  Google Scholar 

  208. O. Kahn, S. Sikorav, J. Gunterou, Y. Jeannin, and J. Jeannin, Inorg. Chem. 22: 2577–2578 (1983).

    Google Scholar 

  209. I. Collamati, G. Dessy, and V. Fares, Inorg. Chim. Acta 111: 149–155 (1986).

    CAS  Google Scholar 

  210. W.B. Tolman, S. Liu, J.G. Bentsen, and S.J. Lippard, J. Am. Chem. Soc. 113: 152–164 (1991).

    CAS  Google Scholar 

  211. B. Bremer, K. Schepers, P. Fleischhauer, W. Haase, G. Henkel, and B. Krebs, J. Chem. Soc. Chem. Comun. 510–511 (1991).

    Google Scholar 

  212. B. Krebs, K. Schepers, B. Bremer, G. Henkel, E. Althaus, W. Müller-Warmuth, K. Griesar, and W. Haase, Inorg. Chem. 33: 1907–1914 (1994).

    CAS  Google Scholar 

  213. V.D. Campbell, E.J. Parsons, and W.T. Pennington, Inorg. Chem. 32: 1773–1778 (1993).

    CAS  Google Scholar 

  214. A. Neves, M.A. de Brito, I. Vencato, V. Drago, K. Griesar, W. Haase, and Y.P. Mascarenhas, Inorg. Chim. Acta 214: 5–8 (1993).

    CAS  Google Scholar 

  215. M. Rapta, P. Kamaras, G.A. Brewer, and G.B. Jameson, J. Am. Chem. Soc., submitted.

    Google Scholar 

  216. P.N. Turowski, W.H. Armstrong, S. Liu, S.N. Brown, and S.J. Lippard, Inorg. Chem. 33: 636– 645 (1994).

    CAS  Google Scholar 

  217. P.N. Turowski, W.H. Armstrong. M.E. Roth, and S.J. Lippard, J. Am. Chem. Soc. 112: 681–690 (1990).

    CAS  Google Scholar 

  218. R.E. Norman, S. Yan, L. Que Jr., G. Backes, J. Ling, J. Sanders-Loehr, and J.H. Zhang, and C.J. O’Connor, J. Am. Chem. Soc. 112: 1554–1562 (1990).

    CAS  Google Scholar 

  219. M.Rapta and G.B. Jameson, unpublished results.

    Google Scholar 

  220. Y. Zang, G. Pen, L. Que Jr., B.G. Fox, and E Münck, J. Am. Chem. Soc. 106: 3653–3654 (1984).

    Google Scholar 

  221. M. Rapta, P. Kamaras, J.A. Cooley, and G.B. Jameson, American Chemical Sociey Meeting, Washington, DC, August 21–25, Division of Inorganic Chemistry, paper 276 (1994).

    Google Scholar 

  222. J.R. Hartman, R.L. Rardin, P. Chaudhuri, K. Pohl, K. Wieghardt, B. Nuber, J. Weiss, G.C. Papaefthymiou, R.B. Frankel, and S.J. Lippard, J. A. Chem. Soc. 109: 7387–7396 (1987).

    CAS  Google Scholar 

  223. K.S. Hagen and R. Lachiotte, J. Am. Chem. Soc. 114: 8741–8742 (1992).

    CAS  Google Scholar 

  224. R. Lachiotte, A.Kitaygarodskiy, and K.S. Hagen, J. Am. Chem. Soc. 115: 8883–8884 (1993).

    Google Scholar 

  225. H.D. Campbell, D.A. Dionysus, D.T. Keough, B.F. Wilson, J. de Jersey, and B. Zemer, Biochem. Biophys. Res. Commun. 82: 615–620 (1978).

    CAS  Google Scholar 

  226. S. Yan, L. Que, L. Jr., L.F. Taylor, and O.P. Anderson, J. Am. Chem. Soc. 110: 5222–5224 (1988).

    Google Scholar 

  227. D.L. Wang, R.C. Holz, S.S. David, L. Que Jr., and M.T. Stankovich, Biochemistry 30: 8187–8194 (1991).

    CAS  Google Scholar 

  228. A.E. True, R.C. Scarrow, C.R. Randall, R.C. Holz, and L. Que Jr., J. Am.Chem. Soc. 115: 4246–4254 (1993).

    CAS  Google Scholar 

  229. (a) S. Gehring, P. Fleischhauer, W. Haase, M. Dietrich, and H. Witzel, Biol. Chem. Hoppe-Seyler371: 786 (1990). This report contradicts earlier reports (125(b) and(c)) of strong antiferromagnetic coupling for oxidized purple acid phosphatase.

    Google Scholar 

  230. E. Sinn, C.J. O’Connor, J. de Jersey, B. Zemer, Inorg.Chim. Acta 78: L13–L15 (1983).

    CAS  Google Scholar 

  231. J.C. Davis and B.A. Averill, Proc. Natl. Acad. Sci., USA 79: 4623–4627 (1982).

    CAS  Google Scholar 

  232. L. Borer, L. Thalken, C. Ceccarelli, M. Glick, J.H. Zhang, and W.M. Reiff, Inorg.Chem.22:1719–1724 (1983).

    CAS  Google Scholar 

  233. J.A. Thich, C.-C. Ou, D. Powers, B. Vasilious, D. Mastropaolo, J.A. Potenza, and H.J. Schugar, J. Am. Chem. Soc. 98: 1425–1432 (1976).

    CAS  Google Scholar 

  234. C.-C Ou, R.A. Lanlancette, J. A. Potenza, and H.J. Schugar, J. Am. Chem. Soc. 100: 2053–2057 (1978).

    CAS  Google Scholar 

  235. W.H. Armstrong and S.J. Lippard, J. Am. Chem. Soc. 106: 4632–4633 (1984).

    CAS  Google Scholar 

  236. A. Ben-Hussein, P. Gómez-Romero, N.L. Morris, 0. Zafarullah,W.M. Reiíï, and G.B. Jameson,unpublished structure of [N3Fe(02CCH3)]20H3+.

    Google Scholar 

  237. A.S. Brovik and L. Que Jr. J. Am Chem. Soc. 110: 2345–2347 (1988).

    Google Scholar 

  238. B.P. Murch, F.C.Bradley, and L. Que Jr., J. Am Chem. Soc. 110: 2345–2347 (1988).

    Google Scholar 

  239. E. Tschuchida, American Chemical Sociey Meeting, Washington, DC, August 21–25, Division of Polymeric Materials: Science and Engineering Inc., International Symposium on Metal- Containing Polymeric Materials: Bioinorganic Polymers, paper 362 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Jameson, G.B. (1990). Model Systems and Structure, Function and Reactivity Relationships in Transition Metal-Containing Biopolymers. In: Pittman, C.U., Carraher, C.E., Zeldin, M., Sheats, J.E., Culbertson, B.M. (eds) Metal-Containing Polymeric Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0669-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0669-6_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7919-8

  • Online ISBN: 978-1-4613-0669-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics